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Abstract: Legislative framework addresses the issues of alloy corrosion, demanding the restricted use
of probable carcinogenic, mutagenic, and toxic-for-human-reproduction (CMG) metals like nickel,
cobalt, and chromium and demanding the development of new biomaterials. The aim of this research
was to evaluate and compare the ion release of standard dental alloys and their hypoallergenic
equivalents. Six types of orthodontic alloy wires (nickel–titanium (NiTi), coated NiTi, stainless steel
(SS), Ni-free SS, and cobalt–chromium (CoCr) and titanium–molybdenum (TMA) were immersed
into artificial saliva of pH 5.5 and 6.6. Release of metal ions was measured by inductively coupled
plasma–mass spectrometry after 3, 7, 14 and 28 days. The data were analyzed using analysis of
variance, and results with p < 0.05 were considered significant. NiTi released more Ti and Ni ions
compared to the coated NiTi; SS released more iron, chromium, and nickel compared to the nickel-
free SS. CoCr released cobalt in a high concentration and low amounts of chromium, nickel, and
molybdenum compared to the molybdenum and titanium released by TMA. Release of metals from
dental orthodontic alloys in vitro was overall lower at pH 6.6 and for the hypoallergenic equivalents
when compared to standard dental alloys.

Keywords: corrosion; dental alloys; orthodontics

1. Introduction

The normal functioning of the stomatognathic system is essential for the health and
psychosocial well-being of every human being, and today, there are increasing demands
for aesthetic and financially accessible dental procedures to achieve health. Numerous and
different artificial materials are used to restore lost, damaged, or deformed oral structures
under the common name of dental materials. At one time, gold was the main dental
material due to its high resistance to corrosion and suitable strength, but due to its high
cost, it was pushed out of use. Today, the most commonly used are dental metal alloy
materials composed of chromium (Cr), nickel (Ni), titanium (Ti), iron (Fe), molybdenum
(Mo), and cobalt (Co) due to their good mechanical properties, corrosion resistance, and
affordability [1–3]. At the same time, for each of these groups of materials, versions
are offered on the market that are advertised as hypoallergenic but, at the same time,
are more expensive. Many studies indicate the interaction of dental materials with oral
tissue, resulting in the evolution of high-performance dental materials to meet the different
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demands of the oral medium [4]. Corrosion is considered the most important factor in the
selection of metallic dental materials; therefore, it deserves special emphasis and must be
evaluated in the oral environment, which is constantly changing [4]. Light alloys have an
oxide layer that makes them resistant to further corrosion; however, these biocompatible
metallic materials tend to corrode locally under changing conditions in the oral medium
and degrade over time, releasing metal ions into the oral cavity [5,6] and thus contributing
to general toxicity. Also, due to the frequent mechanical loads to which dental materials
are exposed in the oral cavity, the protective oxide layer is constantly damaged, causing
wear and permanent electrochemical corrosion [7]. Furthermore, saliva with variable PH,
bacterial biofilm products, high fluoride concentrations, or gastric acid reflux as well as
masticatory and orthodontic forces affect the structural and chemical stability of dental
materials [8]. Previous research showed higher ex vivo results for ions release compared to
the results from in vitro testing, suggesting that every in vitro result, although indicative,
underestimates the clinical ion release [6].

Orthodontic fixed devices as well as partial metal skeleton prostheses and bridges
usually remain exposed to degradation processes in the oral cavity for several years. The
process of the degradation of dental metal alloys is the subject of in vitro research in
which various parameters and their possible synergistic effects are analyzed because a
complete simulation of conditions inside the oral cavity is difficult to achieve due to complex
intraoral processes [9]. Almost all fixed orthodontic devices as well as the metal parts of
partial dentures and bridges are made of metal alloys; among the most used materials are
alloys of stainless steel (SS), cobalt–chromium (CoCr), nickel–titanium (NiTi) and titanium–
molybdenum alloy (TiMo) [10]. A large number of studies that conducted allergic skin tests
indicated evidence related to an allergy to dental alloys, and the metal that plays a leading
role is nickel. This is of special interest for dental medicine because nickel-containing metals
are widely used in orthodontics and prosthetics [11]. Nickel released from dental alloys
can cause an allergic reaction in certain cases, but it is not clear whether it can also cause
hypersensitivity. Schmalz and Garhammer [11] concluded that the relatively high incidence
of nickel allergy should provide an incentive to replace cast Ni-based alloys with an
available suitable alternative alloy. Previous research showed that some of the new products
on the market do not reduce surface or general corrosion but rather increase it [12]. Also,
the prevalence of oral allergies from metals that are part of various dental materials (from
dental and root canal fillings to orthodontic appliances and prosthetic crowns, dentures,
and implants) is increasing [13] Hypersensitivity, allergic reactions, and disease symptoms
have been described, manifesting complex interactions between various components of
dental materials, which came as a result of the nanoparticles intake, electromagnetic
radiation, galvanic corrosion, and particular genetic individual factors [12,14]. For example,
current European Council regulations ban the use of dental amalgam for treating teeth in
children under 15 years old and in pregnant or breastfeeding women [15]. Furthermore,
the European Union (EU) legislative framework addresses the metal alloys’ corrosion
issues, demanding the restricted use of probable carcinogenic, mutagenic, and toxic-for-
human-reproduction (CMG) metals like nickel, cobalt, and chromium and demanding
the development of new biomaterials [16]. The findings so far confirm the need for the
independent testing of new materials on the market and provide justification for using a
version of the offered dental materials in clinical work the non-/justification for increased
treatment costs [5,6,17–19].

In clinical work, for the first phase of orthodontic treatment, both standard NiTi and
coated NiTi can be used due to their similar working properties. In the second phase, the
standard SS and Ni-free SS wires can be alternatively used. In the third, finishing phase,
either CoCr or TMA alloys can be used. The working properties for the abovementioned
alloys in each phase are similar; the difference comes in the cost of the material, chemical
composition, and ions released. Therefore, the aim of this research was to evaluate and
compare the ion release of standard dental alloys and their hypoallergenic but more
expensive equivalents.



Materials 2024, 17, 5254 3 of 12

2. Materials and Methods

Six types of preformed orthodontic archwire alloys were used in this study:

1. BioForce Sentalloy (Dentsply GAC, New York, NY, USA)—NiTi alloy (Ni 50.4% and
Ti 49.6%);

2. High Aesthetic (Dentsply GAC, New York, NY, USA)—NiTi-coated alloy (Ni 50.4%
and Ti 49.6%), with a <0.5 µm thin coating of gold and rhodium [19];

3. Remanium (Dentaurum, Ispringen, Germany)—noble steel (SS) alloy (Cr 18–20%,
Ni 8–10.5%, and the rest Fe);

4. Noninium (Dentaurum, Ispringen, Germany)—noble steel (SS Ni-free) alloy (Mn 16–20%,
Cr 16–20%, Mo 1.8–2.5%, and the rest Fe);

5. Elgiloy (Dentaurum, Ispringen, Germany)—alloy CoCr (Ni 14–16%, Cr 19–21%, Mo 6–8%,
and Co 38–42%);

6. Rematitan Special (Dentaurum, Ispringen, Germany)—TiMo alloy (TMA) (Mo 11.5%
and Ti 78%).

Artificial saliva was prepared from 1.5 g/L KCl, 1.5 g/L NaHCO3, 0.5 g/L 0.5 g/L
KSCN, and 0.9 g/L lactic acid. The pH values were adjusted, with lactic acid imitating a
neutral oral environment (pH 6.6) and the oral environment in the case of poor oral hygiene
(pH 5.5) [17].

Samples of the alloys of dental materials were prepared in laboratory conditions at
the University of Tetovo. Alloy samples were immersed in 10 mL of sterile artificial saliva
(1 cm of sample alloy/1 mL of artificial saliva) for a period of 3, 7, 14, and 28 days at 37 ◦C
and with moderate shaking on a mechanical shaker (100 rpm). Samples containing saliva
without alloys served as the negative control.

All measurements were taken on five samples of each type of examined dental material
in combination with different pH of artificial saliva. Sample size was calculated according
to the power analysis of previous research, with the power of effect set at 0.8, alpha level at
0.05, and a presumed effect size of 0.7 [20]. Every sample was measured once at the end of
every immersion time; the wire sample was transferred into fresh artificial saliva sample
until the total incubation time.

Ion release was recorded using inductively coupled plasma–mass spectrometry
(ICP-MS) (Agilent Technologies 7800, Santa Clara, CA, USA), and all specimens were
acidified with one drop of concentrated HNO4 before injection into the spectrometer. The
release of metals was expressed as µg/cm2 to enable better evaluation of the aspect of
biocompatibility by translating experimental results into clinical conditions, as described
by Arndt et al. [21]. Data presented in this way enable the calculation of the average daily
release for, e.g., two wires (for upper and lower dental arch, total length 28 cm), as expected
in clinical conditions, for persons with good (pH 6.6) or bad oral hygiene (pH 5.5) or any
other clinical situation regarding the type and dimensions of wires.

Statistical analysis for all obtained quantitative data was performed using statistical
software R 4.3.1. (R Core Team, 2023) [22]. The Shapiro–Wilk test was used as the basic test of
normality of distributions. In cases of deviations from the normal distribution, the skewness
and kurtosis of the distributions were calculated, and 3 for flatness and 7 for curvature
were taken as reference values according to Kline’s recommendations [23]. Data analyses
were performed using analysis of variance, which allows testing for differences. Pairwise
comparisons were calculated using Benjamini–Hochberg correction for the p-values. Results
with p < 0.05 were considered significant.

3. Results
3.1. Nickel Release

Results for the nickel release are presented in Figure 1, with equations for linear
trendline and R2-value, where possible. At lower pH, NiTi and CoCr released mostly nickel,
while at pH 6.6, again, NiTi released mostly nickel, while other alloys showed minimum
release. At pH 5.5, release was highest at the first time point, and later, it was minimal or
below detection. At pH 6.6, release was initially high and again increased after 14 days
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of immersion. There was more nickel released at pH 6.6, probably due to the crevice
corrosion caused by surface irregularities. Where there was no variability between time
points, further analyses could not be performed.
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Figure 1. Nickel release from the tested alloys.

3.2. Titanium Release

Figure 2 shows release of titanium. The highest release was noted for NiTi in both pH
settings; TMA had second highest release in pH 5.5, while in pH 6.6, it was the NiTi-coated
alloy. Titanium showed an increase in release over time in both pH settings. Analysis of
the main effects for NiTi and NiTi-coated alloys, regarding release of titanium, showed
significant differences for all time points in both pH settings (Table 1 and Figure 3). The
overall release of titanium was higher than the release of nickel, probably due to the greater
presence of TiO2 on the surface, which needed to be resolved prior to the dissolution of
nickel from subsurface.
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Figure 2. Titanium release from the tested alloys.

Table 1. Analysis of the main effects using analysis of variance for repeated measurements with
testing of the effects of pH, type of alloy, and time (mixed ANOVA, for the titanium released from
NiTi and NiTi-coated alloys.

Effect DFn 1 DFd 2 F 3 p 4 ges 5

Alloy 1.0 16.00 703.27 0.000 0.967
pH 1.0 16.00 277.97 0.000 0.921

Time 1.5 23.93 1946.00 0.000 0.975
Alloy/pH 1.0 16.00 188.09 0.000 0.888

Alloy/time 1.5 23.93 79.59 0.000 0.619
pH/time 1.5 23.93 1.31 0.280 0.026

Alloy/pH/time 1.5 23.93 3.79 0.048 0.072
1 Degrees of freedom for the number of levels; 2 degrees of freedom for the number of measurements; 3 F ratio;
4 p-value; 5 generalized eta square.
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Figure 3. Comparison of titanium release from NiTi and NiTi-coated alloys for every time point in
pH 5.5 (left) and pH 6.6 (right) shows significant differences (*** p < 0.001; ** p < 0.01; * p < 0.05).

3.3. Iron Release

In Figure 4, the graphs show the iron release under both pH values. The SS alloy
had a higher release of iron under both pH values when compared to the nickel-free SS
alloy but only after 7 days of immersion, probably due to surface irregularities caused
by manipulation. The amounts released under higher pH were three times higher than
those released under lower pH. Table 2 and Figure 5 show that all main effects and all
interactions are statistically significant, although they showed lower but still large effects
when compared to other metals.
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Figure 4. Iron (ferrum) released from dental alloys.

Table 2. Analysis of the main effects using analysis of variance for repeated measurements with
testing of the effects of pH, type of alloy, and time (mixed ANOVA) for the iron released from SS and
SS Ni-free alloys.

Effect DFn 1 DFd 2 F 3 p 4 ges 5

Alloy 1.00 16.00 116.44 0.000 0.852
pH 1.00 16.00 66.34 0.000 0.767

Time 1.04 16.72 198.19 0.000 0.720
Alloy/pH 1.00 16.00 26.27 0.000 0.566

Alloy/time 1.04 16.72 83.05 0.000 0.518
pH/time 1.04 16.72 111.83 0.000 0.592

Alloy/pH/time 1.04 16.72 66.41 0.000 0.462
1 Degrees of freedom for the number of levels; 2 degrees of freedom for the number of measurements; 3 F ratio;
4 p-value; 5 generalized eta square.
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3.4. Chromium Release

Figure 6 shows results of the release of chromium in all tested alloys. In lower pH,
most chromium was released in the following order: CoCr < SS < SS Ni-free alloy.
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Figure 6. Release of chromium from wire alloys.

Table 3 and Figure 7 show that all the main effects for the SS and SS Ni-free alloys were
significant, with large effects due to alloy type, pH of saliva, and time of immersion; out of
all the interactions, only the interaction between alloy type and pH value was insignificant.

Table 3. Analysis of the main effects using analysis of variance for repeated measurements with
testing of the effects of pH, type of alloy, and time (mixed ANOVA) for the chromium released from
SS and SS Ni-free alloys.

Effect DFn 1 DFd 2 F 3 p 4 ges 5

Alloy 1.00 16.00 105.94 0.000 0.864
pH 1.00 16.00 338.63 0.000 0.953

Time 1.78 28.46 10,382.57 0.000 0.962
Alloy/pH 1.00 16.00 0.91 0.355 0.052

Alloy/time 1.78 28.46 783.81 0.000 0.657
pH/time 1.78 28.46 123.36 0.000 0.232

Alloy/pH/time 1.78 28.46 18.75 0.000 0.044
1 Degrees of freedom for the number of levels; 2 degrees of freedom for the number of measurements; 3 F ratio;
4 p-value; 5 generalized eta square.
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3.5. Cobalt Release

Figure 8 shows release of cobalt from the CoCr alloy. At lower pH, the release of cobalt
was much higher, approximately four times higher.
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3.6. Manganese Release

Figure 9 shows the release of manganese from the tested alloys; the recorded release
was low overall, and the cumulative amount was similar in both pH settings.
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3.7. Molybdenum Release

Figure 10 shows release of molybdenum from the tested alloys. Under the lower pH,
the release took the following order: TMA > CoCr > SS Ni-free alloy. The overall release
was low.
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The results from Table 4 and Figure 11 show that all main effects were statistically
significant, with large effects due to alloy, pH, and time. Out of all the interactions, the
interaction between alloy type and pH value and the interaction between type of alloy, pH
value, and time were not significant.

Table 4. Analysis of the main effects using analysis of variance for repeated measurements with
testing of the effects of pH, type of alloy, and time (mixed ANOVA) for the molybdenum released
from CoCr and TMA alloys.

Effect DFn 1 DFd 2 F 3 p 4 ges 5

Alloy 1.00 16.0 448.72 0.000 0.963
pH 1.00 16.0 115.28 0.000 0.869

Time 1.07 17.2 656.49 0.000 0.760
Alloy/pH 1.00 16.0 2.30 0.149 0.117

Alloy/time 1.07 17.2 18.04 0.000 0.080
pH/time 1.07 17.2 58.63 0.000 0.221

Alloy/pH/time 1.07 17.2 2.11 0.164 0.010
1 Degrees of freedom for the number of levels; 2 degrees of freedom for the number of measurements; 3 F ratio;
4 p-value; 5 generalized eta square.
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Figure 11. Comparison of molybdenum released from CoCr and TMA alloys for every time point in
pH 5.5 (left) and pH 6.6 (right) shows significant differences (*** p < 0.001) at every time point.

4. Discussion

The ion release from the tested dental alloys was lower from the proposed hypoaller-
genic variants when compared to the standard materials. The greatest amount of nickel
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was released from the uncoated NiTi wires and the stainless-steel wires, while their coun-
terparts had minimal or no nickel release. Also, after initial low release at pH 6.6, the
release of Ni from uncoated NiTi increased substantially, probably due to manipulation
with metal tweezers in between the two time points [24,25] and the emergence of the
subsurface material after the dissolution of the surface protective layer. A similar result was
observed for the iron released from the SS, also probably enhanced by manipulation and
the formation of the unstable ferrous compound, which dissolve quickly in near-neutral
conditions [25,26]. Previous research by Laird et al. also found that hypoallergenic alloys
release less metallic ions when compared to the standard alloys [27] and that the type and
uniformity of coating influence ion release [17,18]. Research by Edward Cho et al. showed
that even thickened rhodium coating on NiTi wires leaches nickel, but the overall amount
is low and almost undetectable in subcutaneous tissue [28]. The levels of released nickel
and titanium in our study are comparable to those of Chikhale et al. [7], who studied NiTi
and TMA wires. Previous research showed that Ni is the most common cause of allergy,
and it also acts as a catalyst, increasing risk of sensitization and allergy to cobalt [29]. As
our results showed, the CoCr alloy released a high amount of the cobalt (among the highest
values of all measured metals) along with a high amount of nickel, and as mentioned, the
combined effect of both ions poses a risk to human health [29]. The interactions and even
catalytic effects provide another reason to keep the overall leaching from dental alloys as
low as possible.

The titanium release was also significantly greater in the classic NiTi when compared
to the coated NiTi, contrary to previous research on coated NiTi wires [18], suggesting
improvement in the coating quality. Recent research has shown more and more cases of ad-
verse reactions in dental patients, caused by the various combinations of galvanic coupling
and influenced by a number of extrinsic (various radiation sources) and intrinsic hereditary
factors [12].Research has shown that accumulation of titanium (and iron) increased the
sensitivity of gingival epithelial cells to microorganisms in the oral cavity and involved the
lymphocytes, macrophages, monocytes, and osteoclasts, deteriorating both soft and hard
tissue in peri-implantitis cases [30,31]. Therefore, the release of iron should be also kept to
a minimum to decrease inflammation and the susceptibility to infections of oral mucosa
and alveolar bone. In our research, the release of iron was significantly lower in Ni-free SS
when compared to the classic SS alloy. It is noteworthy that a higher release of iron was
also recorded after some time of immersion in higher pH, probably due to manipulation
scratches and the formation of unstable ferrous compounds [25,26].

There is a continuous trend that tends to keep the uptake of the metals, metallic
ions, and nanoparticles as low as possible based on the recommendations and legislation
of the EU, International Agency for Research on Cancer (IARC) of the World Health
Organization (WHO), and the U.S. National Toxicology Program (NTP) and Food and Drug
Administration (FDA) [16,32–34]. With new labelling and consumer warnings becoming
mandatory, for alloys containing a CMR substance like nickel, cobalt, or chromium, it
seems advisable to use alloys with lower quantities of the implicated materials or without
them. Our research showed that four times higher concentrations of cobalt were released
from the CoCr alloy in comparison to the counterpart wire made mainly from titanium
and molybdenum, which makes it less recommendable for use. Also, CoCr released all
of the above-mentioned Ni, Co, and Cr and additionally Mo, which makes it the least
desirable option among the available alloys. The release of titanium from the TMA wire
was comparable to results found in previous research [7].

Manganese is an essential element involved in several physiological functions of the
human body, but ongoing Mn accumulation leads to the increased formation of reactive
oxygen species (ROS), which contributes to mitochondrial dysfunction, DNA fragmenta-
tion, and apoptosis [35]. Overall, the released manganese levels were low but still higher
for the standard SS alloy when compared to the hypoallergenic counterpart, with the time
of immersion as the most significant factor.
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The recommended dietary allowances (RDAs) describe the daily dietary levels of
uptake of molybdenum for different age groups, suggesting that children of different age
groups are rather sensitive to certain uptake levels, although the evidence on its influence
on human health is limited [36]. Data on the immunotoxicity of molybdenum are also
limited, with approximately 3% of patients with stainless steel stents also having delayed
contact hypersensitivity to molybdenum. Further studies on influence of molybdenum on
human health are necessary [37]. Molybdenum is added to hypoallergenic Ni-free SS to
improve its corrosion resistance [38], and the release of Mo from this alloy was the least
among all observed alloys. Also, the release of iron from Ni-free SS is much lower than
from the standard SS alloy; therefore, the potential harmful effect from the combination of
both is low.

Mineral sources and elements such as chromium, iron, and manganese, among others,
are essential for humans because they are involved in a variety of metabolic functions,
enzyme activities, receptor sites, hormonal function, and protein transport at specific
concentrations; they can be regulated to some extent, but excessive overload can result in a
number of unfavorable cellular responses, from the production of ROS to DNA and protein
damage, cell apoptosis, and carcinogenesis [39–42].

The overall intake of the various elements should be kept as low as possible, as various
interactions between metals in human body are still to be investigated in detail. Our
research showed that coated NiTi wires should be recommended over standard NiTi, Ni-
free stainless steel should be recommended over standard stainless steel, and the titanium–
molybdenum alloy should be the preferred choice over cobalt–chromium alloys. In this
way, the overall intake of various metals would be kept to a minimum. Also, as legislative
bodies have made distinctions between children’s and adults’ recommended daily uptakes,
it is even more important to keep the overall daily intake as low as possible in children.

The limitation to our research is that the explored release of ions involved in vitro
conditions, and the research shows that the actual ion release could be even higher
in vivo [6,24,25], posing more threat to human health, especially under the reduced antiox-
idant capacity of immunocompromised persons or with the added risks from other sources
of metal ion release (either dental rehabilitation, artificial hips, stents, etc.) [26,38,42].

5. Conclusions

The release of metals from dental orthodontic alloys in vitro is overall lower for the
hypoallergenic equivalents when compared to the standard dental alloys. The lower pH of
artificial saliva mainly caused higher initial and overall metal ions release.

NiTi released more of titanium and nickel metal ions when compared to the coated NiTi.
Stainless steel released more iron, chromium, and nickel when compared to the nickel-

free SS.
CoCr released cobalt in a high concentration and low amounts of chromium, nickel,

and molybdenum compared to the molybdenum and titanium released by TMA.
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