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Simple Summary: One of the main challenges in the application of Machine Learning in medicine
is data collection. Either due to ethical concerns or lack of patients, data may be scarce. In this
paper Deep Convolutional Generative Adversarial Networks (DCGAN) have been applied for the
purpose of data augmentation. Images of bladder mucosa are used in order to generate new images
using DCGANs. Then, combination of original and generated images are used to train AlexNet
and VGG16 architectures. The results show improvements in AUC score in some cases, or equal
scores with apparent lowering of standard deviation across data folds during cross-validation;
indicating networks trained with the addition of generated data have a lower sensitivity across the
hyperparameter range.

Abstract: Urinary bladder cancer is one of the most common urinary tract cancers. Standard diagnosis
procedure can be invasive and time-consuming. For these reasons, procedure called optical biopsy
is introduced. This procedure allows in-vivo evaluation of bladder mucosa without the need for
biopsy. Although less invasive and faster, accuracy is often lower. For this reason, machine learning
(ML) algorithms are used to increase its accuracy. The issue with ML algorithms is their sensitivity to
the amount of input data. In medicine, collection can be time-consuming due to a potentially low
number of patients. For these reasons, data augmentation is performed, usually through a series of
geometric variations of original images. While such images improve classification performance, the
number of new data points and the insight they provide is limited. These issues are a motivation for
the application of novel augmentation methods. Authors demonstrate the use of Deep Convolutional
Generative Adversarial Networks (DCGAN) for the generation of images. Augmented datasets used
for training of commonly used Convolutional Neural Network-based (CNN) architectures (AlexNet
and VGG-16) show a significcan performance increase for AlexNet, where AUCmicro reaches values
up to 0.99. Average and median results of networks used in grid-search increases. These results point
towards the conclusion that GAN-based augmentation has decreased the networks sensitivity to
hyperparemeter change.

Keywords: AlexNet; data augmentation; deep convolutional generative adversarial networks;
urinary bladder cancer; VGG16

1. Introduction

Urinary bladder cancer, as one of the most common malignant diseases of the urinary
tract, is a consequence of a mutation in the bladder’s mucosa cells which causes their
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uncontrolled growth. Such growth shows a high tendency to spread to the rest of mucosa,
but also to other parts of the human body. Above stated facts, urinary bladder cancer is
showing elevated recurrence rates ranging from 61% in the first year, to 78% in the first five
years. Such recurrence rates are among the highest compared to other malignant diseases.
For this reason, diagnosis, treatment and follow-up are extremely challenging [1]. There is
a multiplicity of urinary bladder cancer types, among which the most common are:

• urothelial carcinoma [2,3],
• squamous cell carcinoma [4,5],
• adenocarcinoma [6,7],
• small cell carcinoma [8,9] and
• sarcoma [10,11].

Most urinary bladder cancers are urothelial carcinomas or transitional cell carcinomas
(TCC). These carcinomas are, in their papillary form, characterized by low-grade metastatic
potential [12]. On the other hand, high-grade cancer and carcinoma in-situ (CIS) are
characterized by higher metastatic potential. Unlike TCC, CIS lesion of urinary bladder
mucosa is dominantly flat, making it harder to differentiate from benign growths.

The dominant medical examination for the diagnosis of urinary bladder cancer is
cystoscopy, an endoscopic method where a probe called a cystoscope is inserted into
the urinary bladder via ureter. Modern cystoscopes are equipped with confocal laser
endomicroscopes (CLE) that allow in-vivo evaluation of the mucosa, without the need
for biopsy and patho-histological examination. Such a method called an optical biopsy,
shows high results from the point of view of detecting papillary lesions. On the other
hand, the same method has failed in the detection of CIS, and its accuracy does not exceed
75%. To increase the likelihood of a positive outcome, the goal is an accurate and timely
diagnosis of CIS, which, as already mentioned, is characterized by its high metastatic
potential [13,14].

With aim of increasing accuracy, machine learning (ML) algorithms are introduced
and integrated with CLE-based cystoscopy [15]. Such integration can be of particular
importance especially in the case of CIS recognition. There were several research works
based on ML utilization for cystoscopic image classification. Research presented in [16]
proposed the utilization of a multilayer perceptron (MLP) whose initial weights were
pre-determined with a genetic algorithm. The authors of the research presented in [17]
have proposed a Convolutional Neural Network-based (CNN) approach that achieved
AUC of 0.98. CNN-based approach is also presented in [18], where authors have achieved
accuracies up to 98%. A similar approach is presented in [19], where authors have proposed
utilization of pre-defined networks in order to achieve high classification performances.
The best results have been achieved with Xception architecture (F1 = 99.52%). A hybrid
approach is presented in [20] where authors have proposed a combination of Laplacian
edge detector and MLP that follows CNN methodology. By using this approach, AUC
values up to 0.99 were reached. From the presented overview, it can be noticed that CNN-
based architectures are playing a lead role in ML-based algorithms for the classification of
cystoscopic images. However, regardless of the encouraging results in this area, there is
always room for improvement, both from CNN and data preprocessing standpoint.

The collection of data for Artificial Intelligence (AI) studies in the field of medicine,
especially in the classification of rarely appearing diseases—such as specific types of
carcinoma—can be complex. Not only can the data collection process be hard due to a low
number of patients on which the testing procedures need to be performed, ethical questions
can arise. Not all patients may consent to the data collected during procedures performed
with them as the subject being shared with non-medical researchers. Additionally, it can
be hard to guarantee near equal numbers across various classes, as, naturally, the larger
number of patients on who the testing procedure is performed are positive, due to the test
usually being performed on symptomatic subjects. Due to this, there might be a larger
number of positive test findings in the input, in comparison to the negative (healthy)
patients [20,21].
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Because of the above-listed issues, data augmentation is commonly used. Data aug-
mentation refers to the process of generating new inputs for Artificial Neural Network
(ANN) training. This process is commonly performed on datasets that consist of pictures
as inputs. A common practice is the use of deterministic modifications on the images of
the input dataset, where standard transformations are used [22,23]. These transforma-
tions include vertical and horizontal mirroring, rotating, and scaling of different image
sections [24]. While these transformations can provide additional robustness to the model,
they are still tightly connected to the existing data and may not provide needed variance to
the input dataset.

The answer to this issue lies in the use of Generative Adversarial Networks (GAN) [25].
Through the use of GAN new images can be generated, which can then be used as inputs,
and the resulting models can be tested using previously established metrics, to test the
precision of models created using generated data.

The aim of this research is to examine the influence of GAN-based image data augmen-
tation of CNNs for urinary bladder cancer diagnosis. This research is focused on increasing
the performance of classifiers by applying dataset pre-processing, while using established
CNN architectures that have achieved high classification performance in solving various
problems in practice. From facts stated above, several questions could be asked:

• Is it possible to utilize GAN fo urinary bladder cancer image data augmentation,
• Are classifier performance higher if an augmented set is used and
• How does the share of data generated in the training set affect the performance of

the classifier?

2. Problem Description

The proposed method for urinary bladder cancer diagnosis is based on the utilization
of CNNs in order to classify images obtained by CLE, as presented in Figure 1. The diag-
nosis system is trained by using urinary bladder mucosa images that are obtained with
optical biopsy and evaluated by standard patho-histological examination. The idea behind
the described diagnosis system is to train CNN by using the dataset of confirmed images
that will be used to evaluate new images.

Figure 1. Dataflow diagram of Convolutional Neural Network-based (CNN) utilization in urinary
bladder cancer diagnosis.

Images obtained by CLE are divided into four classes: Non-cancer tissue, high-grade
carcinoma, low-grade carcinoma, and CIS. The representation of each class is given in
Figure 2. One of the challenges in the design of ML-based classifiers is the acquisition
of sufficiently large datasets. Such characteristic is particularly emphasized in medical
diagnostic, where accurate classification is of significant importance [26]. For these reasons,
the aim of this research is to utilize GAN in order to artificially increase the training dataset
that will result in higher classification performances.
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The representation of each class is presented in Figure 2. An example of healthy
mucosa is represented in Figure 2a, where no signs of malignant changes of bladder
mucosa can be found. In this case, it can be stated that the observed tissue represents a
non-malignant disease or a completely healthy mucosa. Figure 2b. represents a high-grade
bladder cancer. In this case, the cells and tissue are poorly differentiated and abnormal,
without geometrical structure or pattern. This grade is characterized by high metastatic
potential [12]. Figure 2c represents a sample of low-grade cancer. In this case, in difference
with the case of high-grade cancer, cells are well differentiated. Figure 2d represents CIS.
This class is characterized by its flat form that significantly differs from papillary carcinomas.
Furthermore, as it is in the case of high-grade bladder cancer, CIS is characterized by high
metastatic potential [12].

(a) Healthy mucosa (b) High grade carcinoma

(c) Low grade carcinoma (d) Carcinoma in-situ

Figure 2. Representation of all four cystoscopy dataset classes.

3. Use of DCGAN Networks in Generation of Medical Data

In this section, a brief overview of a GAN-based image generating process will be
presented. The overview of the process is relatively simple. Dataset is split into two parts—
training and testing set, as is the standard ANN training practice [27,28]. The testing
part of the dataset is set aside, while the training set is fed into the two parts of GAN—
discriminator and generator [29]. A discriminator is trained to distinguish real and fake
images, while Generator is trained to generate images. The generator adjusts its’ parameters
in an attempt of generating images that are realistic enough that the discriminator does not
detect them as false. Once this process is completed, the generated images are mixed with
the original training set, providing an augmented training set. This augmented training set
is then used to train the CNN and created models which are evaluated on images of the
testing set. It is important to note that the testing set does not contain images generated via
the described process. If generated images were of low-quality due to improper settings
of the GAN, scores could still be high if they were used in the evaluation. By avoiding
using the generated images within the test set, if they are of low-quality CNN model will
be trained using inappropriate data—where inappropriate data means generated images
which are massively inconsistent in comparison to real data. If the model is trained with
such data, and then evaluated using real data the scores will be low. In this way, the data
testing process evaluates the CNN and GAN quality as well, as both ANNs will have to
achieve good results for the scores to be acceptable. This process is shown in Figure 3.
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Figure 3. The process of Generative Adversarial Networks (GAN) use for a single image type is
shown. Data is split into training and testing sets, and training set is used to generate additional
images. Generated images are mixed with existing dataset and used for training, generating models
which are finally evaluated on the testing set.

The ANN setup used consists of two separate ANNs—generator and discriminator.
The generator and discriminator used in this research are both deep convolutional neural
networks, which makes GAN used in this research a Deep Convolutional Generative
Adversarial Network (DCGAN) [30].

Convolution is a mathematical operation defined on two functions (x and h) which
produces a third function that expresses how the function h changes the shape of function
x [31]. If n and k refer to indices of the discreete signals, it can be defined with:

C(x, h)[n] = x ∗ h =
∞

∑
k=−∞

h[k]x[n− k]. (1)

Equation (1) defines the one-dimensional, discrete convolution. Considering the fact
that the convolution is performed on images, a two-dimensional definition is necessary,
given by [31,32]:

C(x, h)[n1, n2] =
∞

∑
k1=−∞

∞

∑
k2=−∞

h[k1, k2]x[n1 − k1, n2 − k2], (2)

or:

C(x, h)[n1, n2] =
∞

∑
k1=−∞

∞

∑
k2=−∞

h[k1]h[k2]x[n1 − k1, n2 − k2]. (3)

Convolutional neural networks work by applying convolution onto the input of the
layer [28,33]. They filter the image, capturing the spatial and temporal dependencies
contained within. The role of convolutional networks is transforming images into smaller,
easier to process forms, without losing the important features [34]. The convolution layer
is defined using four parameters [35]:

• number of filters—which define the dimensionality of the output,
• the size of kernel (h)—which specify the dimensions of convolution window,
• strides—which specify convolutional strides along the height and width, and
• padding—which defines whether padding will be applied to the output of convolution

or should the size remain the same.
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Assuming the input image of dimensions 28× 28× 1 pixels, where the first number
represents the height of the image in pixels, the second represents the width, and final is
the number of color channels—in this case one, as a gray-scale image is assumed. The size
of the image is defined, for both its height and width using the following [36]:

L′ =
(L− F + 2P)

S
+ 1, (4)

where:

• L′ is the output dimension (width or height) of the image,
• L is the dimension (width or height) size of the image,
• F is the dimension of the kernel in the same direction (width or height) as the image

dimension being transformed,
• P is the size of padding applied to the image, and
• S is the total number of strides.

The “same” padding is used. This padding will assure that the input image gets fully
covered by the filter and specified stride. As this is the setting used, the Equation (4) can be
simplified to [36]:

L′ =
L
S

. (5)

Transposed convolution allows the input to be expanded instead of compressed as it
is when using convolution. It is commonly used in upscaling, but its role in DCGAN is the
generation of an image from randomized input data using learned weights stored within
the kernel h. Transposed convolution is performed by taking the original image x and
kernel h. Then zero-padding equal to the dimensions of h, minus 1, is added to the image x.
The convolution is then performed and the calculation for each element in the new matrix
C(x, h) is performed using Equation (3), and, to differentiate it, commonly marked using:

C(x, h) = h ∗ ∗x. (6)

The size of the resulting matrix is defined with [32,36]:

L′ = (L− 1) ∗ S + F− 2P, (7)

which can, when using “same” padding be simplified similar to Equation (5) [32,36]:

L′ = L · S. (8)

The networks in question are referred to as “adversarial”, as they are working “against
each other” [37]. The discriminator is trained as a classifier—using the original collected
data—with the goal of differentiating between real and fake images [38]. The generator is
created to generate images, with the goal of tricking the discriminator [30,38]. It takes a ran-
domized input, which is in this case a uniformly distributed random vector of 100 elements
in a range between 0.0 and 1.0. This randomized input is fed into the generator which,
using two-dimensional transposed convolution, generates the image. The generated image
is then fed into the discriminator which classifies it as belonging to the original dataset or
not. In other words; it discriminates between false (generated) images and real ones [38].
If the discriminator determines the image generated is fake, the parameters of the generator
are adjusted, and the process repeats [39]. In this way, the generator continually adjusts its
parameters, until the images produced by it are indistinguishable from the original dataset
images to the discriminator [40].

The input to the generator shaped (1, 100) is fed into a densely connected input layer
shaped (wout/4, hout/4, 256) where wout represents the expected width of the generated
image, and hout represents the expected height of the generated image. This input passes
through batch normalization, which normalizes the output of the previous layer through the
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subtraction of the image batch mean and dividing by the image batch standard deviation.
Such an approach provides higher stability to the network as it avoids too large of a
value appearing in the layer output [41]. It also provides a more independent learning
environment to the layers surrounding it [33,41]. The output is then passed through
LeakyReLU activation function. LeakyReLU comes from Rectified Linear Unit activation
function, which maps the positive input directly to the output, while eliminating the
negative outputs—defined with F (x) = max(0, x). LeakyReLU functions in a similar
manner, but instead of completely eliminating negative values it just lowers their value by
the factor of 0.01 [42]. LeakyReLU can be defined using [43]:

F (x) =
{

x, x ∈ IR+
0

0.01 · x, x ∈ IR−
(9)

The generator then uses two two-dimensional transposed convolution layers to further
expand the image, going to shapes of (wout/4, hout/4, 128) to (wout/2, hout/2, 64) and finally
to (wout, hout, 1). The output of each transposed convolution layer, except the last, is
processed through batch normalization and LeakyReLU activation layers. It can be seen,
that the changes to the image dimensions follow Equation (8). For example, generating
process of 28 × 28 image starts with the aforementioned (1, 100) uniformly randomized
vector, which is mapped using a densely connected layer into the shape of (1, 12,544).
Such a vector is reshaped into the three-dimensional layer shaped (7, 7, 256). Through
the process of transposed convolution, this is transformed into (14, 14, 64), and finally
(28, 28, 1). This form represents the desired output shape. The third dimension is a value
defined via the arbitrary number of filters contained in the two-dimensional transposed
convolution layer.

The discriminator is also defined as CNN. It consists of two two-dimensional con-
volution layers, followed by leakyReLU activation and a Dropout Layer. The dropout
layer applies dropout regularization to the output of a previous layer. Regularization is
important in avoiding the over-fitting of ANN to certain prominent features [27]. Dropout
achieves this by setting a fraction of inputs to the layer to 0. In this case, the rates for
dropout are 0.3 (30%) for both dropout layers. Finally, a flatten layer is used to flatten the
vector of n-dimensional matrices into a vector which can be interpreted by the final layer of
the CNN—a dense layer containing a single output neuron. The value of the neuron in the
final layer defines the output of the discriminator. The architecture and process of training
are shown in Figure 4. The transformation of image sizes within the network follows the
Equation (5). For example, if the input image has the dimensions of (28, 28, 1)—which
is the expected image size—the first two-dimensional convolution layer transforms this
into (14, 14, 64)—where the first two dimensions follow the Equation (5), and the third
being arbitrarily defined number of filters. The second convolutional layer transforms this
into (7, 7, 128), by following the same rules. Finally, this is flattened using the flatten layer
into a vector of dimensions (1, 6272), where the number of 6272 elements is obtained by
multiplying all dimension in the output tensor of the previous layer (7× 7× 128 = 6272),
in order for both of these layer outputs to have the same number of elements. Finally, this
is transformed into a single output neuron using a densely connected layer with the same
number of connections as the outputs of the flatten layer—6272. It is important to note that
in GAN networks the output of the generator needs to fit not only the expected generated
image size, but also the input to the discriminator. When working with DCGANs this
means that convolution and transposed convolution layers need to be adjusted in such a
manner that this can be achieved.
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Figure 4. Illustration of generation process of generation and discrimination of images.

Loss L is a measure of difference between the expected and actual input of the neural
network. In other words, it defines the error of the neural network. By lowering the value
of loss, a more precise ANN is achieved, and this is the goal of training stage of ANNs
(L → 0) [33]. In this research, cross-entropy loss is used. Cross-entropy measures the
difference between two probability distributions for a random variable [27,44]. Entropy
can be defined as the number of bits needed to represent the information of an event
occurring. Lower probability events will have higher entropy, as more information needs
to be conveyed, while higher probability events will have low entropy. For a random
variable z, which can be in a set of discrete states Z, with the number of these states being
|Z|, with the probability of each of these states occurring being defined as P(z), entropy
H(z) can be defined as [45]:

H(Z) =
|Z|

∑
j=0

P(zj) ∗ log(P(zj)). (10)

Cross-entropy on the other hand calculates the number of bits required to represent
event z from distribution P(Z) in comparison to distribution Q(Z). In other words—
how many bits are necessary to represent an event using distribution Q(Z), instead of
distribution P(Z). When used as a loss function the discrete states Z represent the possible
classes. Cross-entropy is derived from the Equation (10), being given as [44]:

H(Z) =
|Z|

∑
j=0

P(zj) ∗ log(Q(zj)). (11)

The classes of discriminator output need to be defined. The discriminator is a binary
classifier, meaning its’ output will be one of the two classes “0” or “1”. In the presented case
the discriminator will return “1” if it classifies the images as “real” and “0” if it classifies the
images as fake. To calculate the cross-entropy of generator the output is compared using
cross-entropy to an array of ones, because if the generator is performing good, the output of
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discriminator will be ones for images—as it will classify them as real For the discriminator
the real cross-entropy is calculated using discriminator output of real images in comparison
to image array of ones (where a value of “1” denotes the class of real image), and fake
cross-entropy is calculated in comparison of discriminator output of fake images (expected
“0”) to an array of zeros. Following this, cross-entropy of discriminator Hd(z) is calculated
as the sum of cross entropies of the real (collected) output Hreal

d (z) and fake (generated)

output H f ake
d (z):

Hd(z) = Hreal
d (z) + H f ake

d (z). (12)

The images are generated using a generator and discriminator with the above-described
hyperparameters, with the only variation being the number of epochs (iterations) for which
the generator is trained to generate new images. Three different epoch ranges are used:
100 epochs, 250 epochs, 500 epochs and 1000 epochs. The number of epochs is an important
hyperparameter for GAN performance tuning. Having a number set too low will cause
the generator network to be undertrained and images will not be of satisfactory quality.
Setting the number of epochs too high will have a negative effect on training times [46].
Still, under training can generate weak results, as it can be seen in Figure 5, where image
generated using 100 epochs (Figure 5a) contains lower amount of data. The same figure
shows an increase in details from the image obtained while training with 500 epochs
(Figure 5c) to image obtained from training the generator over 1000 epochs (Figure 5d).
The artifacts apparent in Figure 5c,d are to be expected as a result of previously described
transposed convolution process, known as “chekerboard” artifacts [47]. Still, while the
effect of number of epochs is visible to the naked eye, the way the number of epochs
affects actual data contained within the image in terms of classification scoring cannot be
determined in this way, and training and testing need to be performed using predefined
CNN architectures, results of which are presented in the following section. It can be
possible that images which, to a human observer, appear to be weaker could contain
enough data to better the classifier performance, while the images which appear better
could be a result of overfitting and fail to do the same [27].

(a) Generated image—100 epochs (b) Generated image—250 epochs

(c) Generated image—500 epochs (d) Generated image—1000 epochs

Figure 5. Comparison of images representing healthy mucosa generated by GAN executed for:
100 (a), 250 (b) 500 (c) and 1000 (d) epochs respectively.
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4. Description of used CNN Models

With aim of investigating the impact of GAN-based image data augmentation on the
urinary bladder cancer diagnosis system, the aforementioned was realized using widely
known CNN architectures: AlexNet and VGG16. In this case, the only number of epochs,
batch size, solver and their parameters are varied with aim of achieving higher classification
performances. A brief description of these CNN models is given in following sections.

4.1. AlexNet

AlexNet is a CNN architecture presented in [48]. This architecture was a winner of the
2012 ImageNet Large Scale Visual Recognition Challenge. AlexNet, with its deeper archi-
tecture, has fueled the “go deeper” trend that is present in most state-of-the-art computer
vision and image classification solutions. It is characterized by nine layer-based architectures
whose configuration, slightly adapted to grayscale images, is presented in Table 1.

Table 1. Description of AlexNet architecture (C—convolutional layer, P—Max pooling, FC—fully connected).

Layer Type Feature Map Size Kernel Size Stride Activation Function

Input Image 1 227× 227× 1 - - -
1 C 96 55× 55× 96 11× 11 4 ReLU

P 96 27× 27× 96 3× 3 2 -
2 C 256 27× 27× 256 5× 5 1 ReLU

P 256 13× 13× 256 3× 3 2 -
3 C 384 13× 13× 384 3× 3 1 ReLU
4 C 384 13× 13× 384 3× 3 1 ReLU
5 C 256 13× 13× 256 3× 3 1 ReLU

P 256 6× 6× 256 3× 3 2 -
6 FC - 9216 - - ReLU
7 FC - 4096 - - ReLU
8 FC - 4096 - - ReLU

Output FC - 4 - - Softmax

4.2. VGG 16

VGG16 is CNN architecture presented in [49]. Such an approach has offered a signifi-
cant improvement in comparison with its predecessor AlexNet and it has been proposed at
ImageNet Large Scale Visual Recognition Challenge in 2013. This architecture is based on a
16-layered configuration that presents a variation of AlexNet where larger kernels in the
first and second convolutional layers are replaced with multiple 3× 3 layers. A slightly
modified version of VGG16 adapted for grayscale images is presented in Table 2.

Table 2. Description of VGG 16 architecture (C—convolutional layer; P—Max pooling; FC—fully connected).

Layer Type Feature Map Size Kernel Size Stride Activation Function

Input Image 1 224× 224× 1 - - -
1 2× C 96 224× 224× 64 3× 3 1 ReLU

P 64 112× 112× 64 3× 3 2 -
3 2× C 128 112× 112× 128 3× 3 1 ReLU

P 256 56× 56× 128 3× 3 2 -
5 2× C 256 56× 56× 256 3× 3 1 ReLU

P 384 28× 28× 256 3× 3 2 ReLU
7 3× C 512 28× 28× 512 3× 3 1 ReLU

P 256 14× 14× 512 3× 3 2 -
10 3× C 512 14× 14× 512 3× 3 1 ReLU

P 512 7× 7× 512 3× 3 2 -
13 FC - 25,088 - - ReLU
14 FC - 4096 - - ReLU
15 FC - 4096 - - ReLU

Output FC - 4 - - Softmax



Biology 2021, 10, 175 11 of 27

Both presented CNN architectures will be trained and tested by using multiple dataset
variations that are presented in the following section.

5. Dataset Construction Methodology

As stated in previous sections of the article, the collected dataset consists of four
classes of urinary bladder mucosa tissue. An overview of dataset characteristics is given in
Table 3 where the number of images contained in each class is presented.

Table 3. Number of instances in all four classes used in the presented research.

Number of Images

Non-cancer tissue High grade cancer Low grade cancer CIS
900 600 680 345

The initial dataset will be divided into two parts, one used for classifier training
and data augmentation and the other used for testing. The data division procedure will
be performed in five different variants, to respect the logic of five-fold cross-validation,
as presented in Figure 6. In other words, four equal parts of the dataset will be used for the
generation of new images. These images, combined with their predecessors will for the
training dataset. The remaining part of the dataset will be used for classifier testing. This
procedure will be repeated five times, with the requirement that the remaining fragment of
the dataset must differ from previous testing sets.

It is necessary to notice that data used for the generation of new images will not be
used during classifier testing. These images will only be combined with generated images
in order to form a training dataset. This dataset will be constructed in four different ways
(one without generated images and three with different numbers of generated images) in
order to examine the influence of the share of generated images in the training dataset
on classification performances of proposed CNNs. The number of images in each of the
training datasets variations is presented in Table 4.

Figure 6. Illustration of a cross-validation procedure adapted for GAN-based augmentation.
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Table 4. Variations in number of original and generated images used for classifier training.

Case Number of Original
Images

Number of Generated
Images

Total Number of
Images

1 2020 0 2020
2 2020 2020 4040
3 2020 10,100 12,120
4 2020 18,180 20,200

6. Performance Evaluation Measures

Classification performances of AlexNet and VGG16 trained with different configura-
tions of training dataset will be evaluated using multi-class receiver operating characteristic
(ROC) analysis. Such an analysis represents a standard evaluation method for binary clas-
sifiers [50]. ROC analysis is based on a graphical method of constructing a curve whose x
coordinate represents the rate of correctly classified positive samples and the y coordinate
represents the rate of incorrectly classified positive samples. The ROC curve, together with
the abscissa and the ordinate encloses the surface with. The area of this surface is called the
area under the ROC curve (AUC) and represents a quantified one-dimensional measure of
classifier performance. With aim of applying AUC on multi-class classification problem,
as is the problem presented in this paper, some modifications of ROC analysis must be
performed [21]. Four class classification can be visually interpreted with a confusion matrix:

M =


M11 M12 M13 M14
M21 M22 M23 M24
M31 M32 M33 M34
M41 M42 M43 M44

, (13)

where elements od the main diagonal represent ratios of correct classifications in a par-
ticular class. All other elements represent ratios of some form of incorrect classifications.
As stated above, ROC analysis is based on a graphical representation of the relationship be-
tween correctly classified positive samples and incorrectly classified positive samples. Such
an approach is not straight-forward in the case of multi-class classification. For these rea-
sons, micro-average AUC (AUCmicro) and macro-average AUC (AUCmacro) are introduced.
A brief descriptions of AUCmicro and AUCmacro are presented in the following paragraphs.

6.1. Micro-Average AUC

Micro-average AUC, as it is in the case of binary ROC analysis, can be expressed by
using true positive rate and false positive rate (TPR and FPR). For the case of binary ROC
analysis, TPR can be defined as:

TPR =
PC

PC + PI
, (14)

where PC represents a number of correct classifications in positive class and PI represents a
number of incorrect classification into positive class. In the case of micro-average AUC,
these rates are also calculated by using all confusion matrix elements. By following the
stated logic, TPRmicro is defined as:

TPRmicro =
tr(M)

G(M)
, (15)

where tr(M) represents the trace of the confusion matrix defined as:

tr(M) =
N

∑
m=1

Mmm, (16)
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and GM represents the sum of all confusion matrix elements:

G(M) =
N

∑
m=1

N

∑
n=1

Mmn. (17)

On the other hand, FPRmicro is defined as:

FPRmicro =
G(M)− tr(M)

G(M)
. (18)

6.2. Macro-Average AUC

For the case of macro-average AUC, TPR is expressed as an average of individual TPR
values, expressed for each class separately. Such average value can be defined as:

TPRmacro =
1
N

N

∑
n=1

TPRn. (19)

An example of individual TPR value can be given for the fist class as:

TPR1 =
M11

M11 + M12 + M13 + M14
. (20)

Analogously, FPRmacro can be defined as:

FPRmacro =
1
N

N

∑
n=1

FPRn. (21)

An example of individual FPR value is given for the first class and it is defined as:

FPR1 =
M21 + M31 + M41

G(M)− (M11 + M21 + M31 + M41)
. (22)

Presented measures will be applied for each of the five cases of cross-validation. As a
final measures, mean AUCmicro and mean AUCmacro will be used. These mean values will
be presented alongside their standard deviations, in order to determine generalization
performances of CNNs trained with different variations of the augmented dataset.

6.3. Model Quality Estimation

In order to estimate the model with the highest classification performances, all trained
models must be compared. For this reason, results achieved with each model are presented
as a set of tuples:

S = {S1, S2, ..., SN}, (23)

where each element represents a tuple of results obtained by each model defined as:

Sn = (AUCmicro, AUCmicro, σ(AUCmicro), σ(AUCmacro)). (24)

The set S is sorted in such a manner that:

π1(S1) ≥ π1(S2) ≥ ... ≥ π1(SN), (25)

where π1 represent the first element in a tuple, mainly AUCmicro. In the case when:

π1(Sn−1) = π1(Sn), (26)
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two tuples are sorted in such a manner that:

π3(Sn−1) ≤ π3(Sn). (27)

In this case, π3 corresponds to the value of the third element of a tuple, mainly
σ(AUCmicro).

Presented measures will be used for the determination and comparison of the best-
achieved results. Furthermore, in order to determine the general performances of entire
variation and network architecture, mean, median and standard deviation of AUCmicro
and σ(AUCmicro) will be measured on the population of all results achieved during a
grid-search procedure.

7. Results and Discussion

In order to compare the achieved results and to determine the influence of GAN-based
augmentation on the proposed classifiers, first the performances achieved by classifiers
trained with the original dataset must be measured. In this case, it can be noticed that
higher results (up to 0.97) are achieved if VGG-16 is used. Furthermore, it can be noticed
that slightly lower classification performances are achieved when AlexNet is used for
classification, as presented in Table 5.

Table 5. Results achieved with AlexNet and VGG16 architectures without data augmentation (Case 1).

Architecture Solver Batch Number
AUCmicro σAUCmacro AUCmacro σAUCmacroSize of Epochs

AlexNet RMSprop 16 10 0.96 0.04 0.96 0.05
VGG16 Adam 16 7 0.97 0.01 0.97 0.01

It can be noticed that the AlexNet architecture that has achieved the highest classifica-
tion performances is characterized with higher σ(AUCmicro) and σ(AUCmacro). For these
reasons it can be concluded that AlexNet has lower generalization ability in comparison
with VGG-16. Furthermore, it can be concluded that VGG-16 deals better with the dataset
diversity. This property can be attributed to its deeper architecture.

When the influence of GAN-parameters and share of generated images in the training
dataset on the performances of the top-ranked AlexNet models are observed, it is inter-
esting to notice that the highest performances are achieved by increasing the number of
GAN epochs to the particular level. It is interesting to notice that increasing the share
of generated images in the training dataset does not increase classification performances,
rather it decreases them. It can be noticed that the lowest classification performances are
achieved when the set augmented with images generated by GAN in 100 epochs. However,
these classification performances are still higher than classification performances achieved
without data augmentation, pointing to the conclusion that GAN-based augmentation
has, in general, a positive impact on the image classification performed by using AlexNet.
All statement could be supported by data presented in Table 6, where the first column
corresponds to nomenclature presented in Table 4.

When results achieved with VGG-16 are compared, it can be noticed that in all cases,
AUCmicro and AUCmacro up to 0.99 are achieved. As in the case of AlexNet, lower clas-
sification performances are achieved if the original training dataset is augmented with
images generated by GAN in 1000 epochs. Furthermore, a slight performance decay can be
seen in the case when 18180 generated images are used for augmenting the original set.
For these reasons, it can be concluded that a higher share of augmented images reduces
the performances of top-ranked VGG-16 architectures. All presented facts could be seen
in Table 7.
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Table 6. Results achieved with AlexNet architecture.

Case GAN Solver Batch Number
AUCmicro σAUCmicro AUCmacro σAUCmacroEpochs Size of Epochs

100 AdaDelta 32 9 0.98 0.01 0.98 0.013

2 250 AdaMax 32 9 0.99 0.003 0.99 0.003
500 AdaMax 32 8 0.99 0.003 0.99 0.003

1000 AdaMax 32 10 0.99 0.003 0.99 0.002

100 AdaMax 4 9 0.98 0.02 0.98 0.011

3 250 AdaMax 32 8 0.99 0.002 0.99 0.002
500 AdaMax 32 5 0.99 0.001 0.99 0.001

1000 AdaMax 32 9 0.99 0.003 0.99 0.003

100 AdaDelta 8 8 0.98 0.005 0.98 0.005

4 250 AdaGrad 16 10 0.99 0.004 0.99 0.004
500 AdaMax 32 10 0.99 0.003 0.99 0.003

1000 AdaMax 32 10 0.99 0.002 0.99 0.002

Table 7. Best results achieved with VGG-16 architecture.

Case GAN Solver Batch Number
AUCmicro σAUCmacro AUCmacro σAUCmacroEpochs Size of Epochs

100 AdaGrad 8 9 0.99 0.004 0.99 0.004

2 250 AdaGrad 8 8 0.99 0.002 0.99 0.002
500 AdaGrad 4 6 0.99 0.0007 0.99 0.0007

1000 AdaGrad 16 10 0.99 0.0004 0.99 0.0004

100 AdaGrad 8 4 0.99 0.004 0.99 0.003

3 250 AdaDelta 4 8 0.99 0.002 0.99 0.002
500 AdaGrad 16 6 0.99 0.0005 0.99 0.0005

1000 AdaGrad 8 9 0.99 0.001 0.99 0.001

100 AdaDelta 8 10 0.99 0.005 0.99 0.004

4 250 AdaGrad 16 10 0.99 0.002 0.99 0.002
500 AdaDelta 8 10 0.99 0.002 0.99 0.002

1000 AdaGrad 16 10 0.99 0.001 0.99 0.001

If results achieved with each variation of AlexNet trained with images generated by
GAN in 100 consecutive epochs are compared, it can be noticed that the highest median
and average AUCmicro is achieved if the training dataset is augmented with 10,100 GAN-
generated images. Furthermore, it can be noticed that the standard deviation of AUCmicro
is showing a significant decreasing trend suggesting the more stable network behavior,
as presented in Figure 7a. When σ(AUCmicro) is observed, it can be noticed that lower
median and average values were achieved if augmented datasets are used for training.
It can be noticed that the lowest median and σ(AUCmicro) values are achieved if 10,100
generated images are added to the training set. The standard deviation of σ(AUCmicro) is
also the lowest in the same case, as presented in Figure 7b. Presented results are suggesting
improvement from a standpoint of generalization when an augmented training dataset
is used. When presented results are summed up, it can be concluded that, in the case of
100 consecutive GAN epochs, the highest performances are achieved if 10,100 images are
added to the training dataset.
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Figure 7. Median, average AUCmicro and standard deviation of AUCmicro and σ(AUCmicro) for the
case of AlexNet trained with images generated by GAN in 100 epochs.

Similar results are achieved when images are generated with GAN trained for 250
epochs. In this case, a set assembled with original images combined with 10,100 generated
images again achieves the highest median and average values of AUCmicro. The difference
lays in the fact that the standard deviation of AUCmicro is the lowest when 2020 gener-
ated images are used for training dataset construction, as presented in Figure 8a. When
σ(AUCmicro) is observed, it can be noticed that the lowest average value is achieved in the
case of 2020 images, while the lowest median value is achieved in the case of 10,100 images.
The standard deviation of σ(AUCmicro) achieves the minimum value of 0.026 when Case
2 is observed. By combining results from both AUCmicro and σ(AUCmicro) standpoint it
can be concluded that, again, the best results will be achieved if 10,100 generated images
are added to the training dataset. This conclusion could be drawn from the fact that av-
erage and median AUCmicro values are significantly lower in Case 2, as seen in Figure 8b.
This fact, due to classification capability, plays the dominant role in variation rankings,
regardless of better generalization performances of the configuration presented in Case 2.
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Figure 8. Median, average AUCmicro and standard deviation of AUCmicro and σ(AUCmicro) for the
case of AlexNet trained with images generated by GAN in 250 epochs.

When images generated by using GAN executed for 500 consecutive epochs are added
to the training dataset, similar results are achieved. In this case, average AUCmicro values
higher up to 0.95 are achieved. Presented value is achieved when configuration marked as
Case 3 is used. Is it interesting to notice that median values are higher in Case 2 and Case
4 than in Case 3, as presented in Figure 9a. When the standard deviation of AUCmicro is
observed, it can be seen that the lowest value is achieved in Case 3. For these reasons, it
can be concluded that the presented configuration has the best consistency of classification
performances, regardless of batch size, the number of training epochs and solver used.
When generalization performances are observed, it can be noticed that the lowest average
σ(AUCmicro) is achieved in Case 3. Furthermore, it is interesting to notice that the median
value is lower in Case 2. When the standard deviation of all achieved σ(AUCmicro) values
is observed, it can be noticed that the lowest standard deviation is also achieved in the
case when 10,100 generated images are added to the training set, as presented in Figure 8b.
From presented results, it can be concluded that the best performances are achieved when
Case 3 is used for the construction of the training dataset. This property is valid from both
classification and generalization standpoints.
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Figure 9. Median, average AUCmicro and standard deviation of AUCmicro and σ(AUCmicro) for the
case of AlexNet trained with images generated by GAN in 500 epochs.

When the training dataset is augmented with images generated by GAN in 1000
consecutive epochs, slightly different conclusions could be drawn. In this case, a decay
of median and average values of AUCmicro can be noticed, as presented in Figure 10a. It
can be noticed that by increasing the share of generated data in the training dataset, no
significant change in median and average value can be noticed. Furthermore, a significant
fall of standard deviation can be noticed, pointing towards the conclusion that by using a
lager share of generated images, a significantly lower change in classification performances
is achieved. When generalization performances are observed, it can be noticed that the
lowest median and average values of σ(AUCmicro) are achieved in the case when 2020
generated images are used for testing dataset augmentation. Furthermore, it can be noticed
that the lowest standard deviation is also achieved in this case, as presented in Figure 10b.
From presented results, it can be noticed that the best results are, in this case, achieved
when 2020 generated images are used for data augmentation. When results obtained for all
four GAN configurations are summed up, it can be concluded that the dominantly highest
performances, both from classification and generalization standpoints, are achieved when
images are generated by using GAN for 500 consecutive epochs.
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Figure 10. Median, average AUCmicro and standard deviation of AUCmicro and σ(AUCmicro) for the
case of AlexNet trained with images generated by GAN in 1000 epochs.

When the results achieved with VGG-16 architecture trained with augmented set
generated by GAN executed for 100 executive epochs are observed, it can be noticed that a
significant improvement of classification performances can be seen only if 10,100 generated
images are added to the training dataset. In all other cases, a significant increase can be
seen only when median values are observed, as presented in Figure 11a. Furthermore,
a significant increase in the standard deviation of AUCmicro can be noticed, suggesting more
unstable behavior of networks trained with augmented datasets. When generalization
performances are observed, it can be noticed that if augmented training sets are used,
higher average values of σ(AUCmicro) are achieved. On the other hand, a significant
decrease in median values can be noticed for Case 3 and Case 4. The standard deviation of
σ(AUCmicro) does not show a significant difference, regardless of the share of generated
images, as presented in Figure 11b. Presented results are suggesting that there is no
significant positive impact on generalization performances of VGG-16 when it is trained by
using the training dataset augmented with images generated by GAN in 100 epochs.
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Figure 11. Median, average AUCmicro and standard deviation of AUCmicro and σ(AUCmicro) for the
case of VGG-16 trained with images generated by GAN in 100 epochs.

When images added to the training dataset are generated by GAN in 250 epochs,
similar trends could be noticed. In this case, a slight increase in VGG-16 performances
could be noticed. It is interesting to notice that higher median values are achieved when the
training dataset is augmented by using 10,100 and 18,180 augmented images. On the other
hand, there is no significant change of average AUCmicro values, as presented in Figure 12a.
By observing the change of standard deviation of AUCmicro. When generalization perfor-
mances are observed, it can be noticed a significant decrease of median σ(AUCmicro) can
be noticed, as presented in Figure 12b. On the other hand, there significant decrease of
average σ(AUCmicro) and its standard deviation, which is even higher. These results are
pointing towards the conclusion that there is no increase in generalization performances.
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Figure 12. Median, average AUCmicro and standard deviation of AUCmicro and σ(AUCmicro) for the
case of VGG-16 trained with images generated by GAN in 250 epochs.

When classification performances of VGG-16 trained with augmented dataset con-
structed with images generated by GAN in 500 epochs are compared, a slight increase of
average and median value of AUCmicro can be noticed. In the same time, due to higher
standard deviations, a conclusion that defines a more unstable behavior of VGG-16 net-
works trained with augmented dataset can be drawn. All presented properties are shown
in Figure 13a. When generalization performances are observed, it can be noticed that
there is no significant decrease of median σ(AUCmicro). On the other hand, a decrease
in median value can be noticed, as presented in Figure 13b. As it is in the case of all
presented variations of training dataset used for training of VGG-16, there is no significant
change in generalization capabilities of such a network. On the other hand, only limited
improvements are achieved in classification performances.
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Figure 13. Median, average AUCmicro and standard deviation of AUCmicro and σ(AUCmicro) for the
case of VGG-16 trained with images generated by GAN in 500 epochs.

As the last case, VGG-16 trained with a dataset augmented with images generated
by GAN in 1000 consecutive epochs. When classification performances are compared,
a significant increase of the median value of AUCmicro can be noticed in Case 2 and
Case 3. On the other hand, there is no significant increase in average value, as presented
in Figure 14a. Furthermore, it can be noticed that the standard deviation of AUCmicro is
significantly larger if augmented datasets are used, suggesting the less stable behavior.
When generalization performances are observed, it can be noticed that by increasing the
share of GAN-generated images, lover median values of σ(AUCmicro) are achieved. This
property is valid only for Cases 3 and 4. On the other hand, there is no decrease in average
value. In other words, average σ(AUCmicro) is lower when the original dataset is used
for the training of VGG-16. When the standard deviation of σ(AUCmicro) is observed, no
significant change can be noticed, as presented in Figure 14b. From presented facts, it can
be concluded that there is an increase in generalization performances of VGG-16 when
images generated in 1000 epochs are used for training dataset augmentation.
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Figure 14. Median, average AUCmicro and standard deviation of AUCmicro and σ(AUCmicro) for the
case of VGG-16 trained with images generated by GAN in 1000 epochs.

When all obtained results are compared, it can be noticed that by using AlexNet
trained with augmented dataset constructed with 10,100 images generated with 500 GAN
epochs significantly larger average and median values of AUCmicro are achieved. Further-
more, the most stable performance is also achieved by using this configuration, judging by
the lowest value of the standard deviation. Furthermore, if VGG-16 architecture trained
with augmented dataset constructed with 18180 images generated trough 250 epochs is
used, no significant improvement in regard to the average and median value of AUCmicro
is achieved. Presented values are only slightly higher than values achieved with VGG-16
architecture trained with the original dataset, as presented in Figure 15a. When general-
ization performances are compared, it can be noticed that by using AlexNet architecture
lower average and median values of σ(AUCmicro), as well as its standard deviation. These
results are pointing to the conclusion that AlexNet trained with an augmented dataset
has achieved higher generalization performances, in comparison with networks trained
with the original dataset. On the other hand, it can be noticed that VGG-16 architecture
trained with augmented dataset achieves higher average, median and standard deviation
of σ(AUCmicro), as presented in Figure 15b. These results are pointing to the conclusion
that VGG-16 architecture, trained with augmented dataset performs poorer than networks
trained with original dataset.
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Figure 15. Comparison of achieved results.

8. Final Remarks and Conclusions

According to the presented results, it can be seen that GAN-based augmentation has an
influence on the classification and generalization performances of CNNs. It can be noticed
that, in case of AlexNet, such an approach does not increase significantly performances of
best configuration but rather it increases average and median performances. Although not
significant, the improvement of the best configuration is visible in classification and gener-
alization. For this reasons, it can be concluded that GAN-based augmentation has enabled
a significantly more stable network behavior and made it less sensitive to changes in the
number of epochs, batch sizes and solvers. Furthermore, a significant improvement can
be seen from a standpoint of generalization. Although promising for AlexNet, the results
for the VGG-16 show no significant improvement except from the standpoint of the best
configuration, whose classification and generalization capabilities have been increased.
For this reason, it can be concluded that the improvement depends not only on the GAN
configuration and the share of generated images in the training dataset, but also on the
network architecture itself. In accordance with the hypotheses set forth in the introduction,
the following conclusion can be drawn:

• It is possible to utilize GAN for augmentation of urinary bladder cancer image dataset,
• It can be noticed that the classifier performances are higher if an augmented set is

used,
• By increasing the share of generated images, classifier performances are increasing to

a certain level and then decreasing.
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18. Bogović, K.; Lorencin, I.; And̄elić, N.; Blažević, S.; Smolčić, K.; Španjol, J.; Car, Z. Artificial intelligence-based method for
urinary bladder cancer diagnostic. In Proceedings of the International Conference on Innovative Technologies, IN-TECH 2018,
Zagreb, Croatia, 1–2 March 2018.

19. Eminaga, O.; Eminaga, N.; Semjonow, A.; Breil, B. Diagnostic classification of cystoscopic images using deep convolutional
neural networks. JCO Clin. Cancer Inform. 2018, 2, 1–8. [CrossRef] [PubMed]
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