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Abstract: In the case of pandemics such as COVID-19, the rapid development of medicines addressing
the symptoms is necessary to alleviate the pressure on the medical system. One of the key steps in
medicine evaluation is the determination of pIC50 factor, which is a negative logarithmic expression
of the half maximal inhibitory concentration (IC50). Determining this value can be a lengthy and
complicated process. A tool allowing for a quick approximation of pIC50 based on the molecular
makeup of medicine could be valuable. In this paper, the creation of the artificial intelligence (AI)-
based model is performed using a publicly available dataset of molecules and their pIC50 values.
The modeling algorithms used are artificial and convolutional neural networks (ANN and CNN).
Three approaches are tested—modeling using just molecular properties (MP), encoded SMILES
representation of the molecule, and the combination of both input types. Models are evaluated
using the coefficient of determination (R2) and mean absolute percentage error (MAPE) in a five-fold
cross-validation scheme to assure the validity of the results. The obtained models show that the
highest quality regression (R2 = 0.99, σR2 = 0.001; MAPE = 0.009%, σMAPE = 0.009), by a large
margin, is obtained when using a hybrid neural network trained with both MP and SMILES.

Keywords: artificial neural networks; convolutional neural networks; machine learning; pIC50;
regression modeling; SMILES

1. Introduction

When a global pandemic arises, there are many different types of pressure put on
the healthcare system, mostly caused by a large number of infected patients that require
treatment and quarantine to lower the mortality and spread rates of the disease at hand [1].
This was most clearly seen in the recent COVID-19 pandemic. The quick development
of not only vaccines that will control and lower the spread of the disease [2], but also of
the medicines which will allow for the treatment of the infected is key in the combat of
pandemics [3]. Due to the nature of the pandemic and similar epidemiological diseases,
treatment may need to be developed rapidly to lower the healthcare system and societal im-
pacts of such an event [4]. Still, the development of pharmaceuticals targeted at combating
a particular disease is a daunting task even without the pressure of a looming pandemic [5].
For this reason, the creation of tools that may help alleviate the issues related to the process
may be key in combating arising diseases.

One of the tools commonly used for general rapid development is artificial intelligence
(AI) [6], particularly the data-driven methods commonly referred to as machine learning
(ML) [7]. AI-based modeling techniques have shown wide applications in many fields,
including medicine and related scientific branches [8], and were shown to be particularly
useful in addressing various issues faced during the recent pandemic [9]. While not
necessarily the be-all and end-all of modeling, especially in sensitive environments such
as patient care, AI-based tools are shown to be very good preliminary design tools [10,11],
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which serve to assist experts in the given field in making more precise, better informed,
and most-importantly, faster decisions [12].

One of the key processes in pharmaceutical development which may be addressed
by an AI-based tool is the determination of the half maximal inhibitory concentration
(IC50) [13]. The usual determination of IC50 requires the determination of the dose–response
curve through the examination of how the different concentrations of antagonist affect the
reversal of agonist activity [14]. This can be a lengthy and complicated process. For this
reason, the authors propose the usage of an AI-based artificial neural network (ANN) for
the initial approximation of the pIC50 value which is the negative logarithm of the IC50
expressed in molars. The goal is to develop a system that will, based on the molecular
makeup of the certain compound, approximate its pIC50, which may allow the pharma-
ceutical professional to decide whether testing the compound at hand further is necessary
or not. Due to how fast the ANNs are at calculating the output value, this could allow for
wider testing of different compounds.

From a large amount of recent research, it can be concluded that the matter of predict-
ing drug parameters, especially IC50, is a widely researched and interesting topic. To assure
the novelty, the presented research will focus on applying a custom new type of model
(hybrid combination of CNN and MLP ANNs), with the goal of increasing the performance
of the models beyond the previously achieved ones, as shown above. The researchers posit
the following research questions (RQ):

• RQ.1. Can ANNs be used to approximate the pIC50 values, especially on a low amount
of data?

• RQ.2. Can the above approximation be successfully performed using just molecular
properties (MP), just SMILES annotation of the compound, or are both necessary?

• RQ.3. If the above approximation is possible, which are the hyperparameters of the
ANN model that can provide the best results for the task?

The description of the used dataset will follow, with the authors performing a basic
statistical analysis to determine the dataset quality and the modeling approach. Then,
a description will be given of the dataset preparation for its use in the aforementioned
techniques, followed by an explanation of different ANNs used in the modeling process. Fi-
nally, the results obtained with the described methodology will be presented and discussed
with the appropriate conclusions drawn from them.

2. Materials and Methods

In this section, the dataset is briefly described, followed by the description of different
methods used to precisely regress the output.

2.1. Dataset Description

The research is based on a publicly available dataset entitled “COVID-19 Drug Discovery
Data”, provided by the Indian Government. The dataset was released in 2020, for the purpose
of analysis of drugs that were considered as possible treatments for alleviating symptoms of
COVID-19, based on the medicines that were being provided to the patients at the time as well
as the medicines discussed as possible treatments at a governing level [15]. The dataset was
provided as a list of the compounds, with their SMILE notation, and was further expanded with
molecular properties based on the PubChem library of chemical compounds [16]. The dataset
is publicly available from [17], while the additional chemical details of the compound can be
looked up in the aforementioned PubChem database. Observing the chemicals, it can be noticed
that all of the compounds describe organic molecules of a relatively large size. The dataset in
question consists of a SMILE notation of the compound, chemical descriptors/properties of the
molecule (to be referred to as molecular properties-MP, in the rest of the paper), and the pIC50
value of the individual molecule. The goal of the dataset is to provide data for the development
of the models which approximate the pIC50 of the compound based on the existing data. A total
of 104 compounds that have been used to treat COVID-19 patients are contained in the dataset.
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Simple data preparation is performed before the data is used in further research, for
machine-learning model training. Some of the data points do not have a numerical value
for pIC50, instead replacing it with the term “BLINDED”. Due to these data points not being
usable, they are removed from the dataset, yielding a dataset with 94 data points. Some of
the data points are missing certain molecular properties within the data. To avoid losing
additional data points in an already relatively small dataset, a sentinel value of−1 is used to fill
the empty cells [18]. As no original data has the value of −1, meaning that the sentinel value
directly indicates the non-existent data in the data vector. In addition to row removal, some of
the columns are removed, such as compound identifying information (name or PubChem
compound ID), or other non-numerical data such as alternative molecule descriptors that
cannot be generally processed within the dataset. The descriptive statistics of the values that
have been kept within the dataset are given in Table A1, within Appendix A.1. As the table
shows, after the described dataset preparation process the following molecular descriptors are
kept within the dataset, in addition to the SMILES molecule description and pIC50 value of
the compound: molecular weight, XLogP [19], exact mass, monoisotopic mass, topological
polar surface area, complexity, charge, H-bond donor count, H-bond acceptor count, rotatable
bond count, heavy atom count, isotope atom count, atom stereo count, defined atom stereo
count, undefined atom stereo count, bond stereo count, defined bond stereo count, undefined
bond stereo count, covalent unit count, 3D volume, 3D X-steric quadrupole value, 3D Y-steric
quadrupole value, 3D Z-steric quadrupole value, 3D feature count, 3D feature acceptor count,
3D feature donor count, 3D feature anion count, 3D feature cation count, 3D feature ring count,
3D feature hydrophobe count, 3D conformer model RMSD, 3D effective rotor count, and 3D
conformer count. The distributions of all the used numerical data points are given in Figure A1,
within Appendix A.2., with the best fitting distribution to each given in the subfigure. What
can be noted is that none of the data vectors follow the normal or uniform distribution. This
fact, in addition to the relatively low number of data points, points to the fact that additional
validation, such as k-fold cross-validation, will be necessary to properly validate the obtained
data-driven models [20]. In addition to that need, the descriptive statistics show that certain
inputs are constant (isotope atom count, charge, undefined bond stereo count, defined atom
stereo count). Due to the inputs being constant through the entire dataset, they should have
no influence on the output [21]. Observing the median and standard deviation values of the
variables, it can be seen that other variables have a large value spread, which is confirmed by
the data distribution histograms. Observing the correlation of the individual properties to
the pIC50 output, it can be noted that all of the correlation values of the inputs are relatively
low, with none having an absolute value of the correlation higher than 0.5. Covariance is
also generally low, except for certain variables such as complexity (−44.903), and exact and
monoisotopic masses (−16.863 and −16.883, respectively).

In addition to the above-discussed variables, a SMILES notation [22] of each compound
is provided. This allows the research to utilize the molecular makeup of the compound
itself as one of the inputs in the modeling. However, to achieve this, the SMILES notation
needs to be transformed in a manner that allows its use as an input for an ANN. To achieve
this, a system is developed which will allow for the transformation of the SMILES string
into a one-hot encoded matrix [23]. One-hot encoded matrices are given a commonly used
way of transforming a string of symbols into a matrix format [24].

To transform the SMILES string into the desired format, the algorithm will go through
the entire dataset and split SMILES strings into individual symbols. While doing this,
each unique symbol will be noted and stored in the memory. This first iteration will serve
to determine which SMILES symbols exist in the dataset. An additional element that
will be noted is the maximum symbol length of the SMILES notation string (which is not
necessarily equal to the number of characters, due to elements such as “Br” representing a
single symbol consisting of two characters [25]). The number of unique symbols and the
maximal SMILES length will allow us to determine the size of the one-hot matrix to be used.
The matrix will have the number of rows equal to the number of unique symbols and the
number of columns equal to the maximum SMILES length. An example of such a matrix is
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given in Figure 1. In the illustrated example, the dataset would consist of molecules that
consist of the following symbols “C”, “-”, “Cl”, and “Na”, with the maximum SMILES
symbol length of 10. When applied to a realistic set of molecules, such as the dataset that
is being observed in the presented research, the individual matrix will be larger. When
the first step of the conversion has been performed a total of 21 unique symbols are found
in the dataset (in order of appearance: “Cl”, “C”,“1”, “=”, “(”, “N”, “O”, “)”, “S”, “2”,
“F”, “#”, “3”, “[”, “+”, “]”, “-”,“4”, “Br”, “I”, “\\”), with the maximal SMILES symbol
length of 78. This approach of adjusting the input matrix size has the benefit of avoiding
unnecessary padding by making the matrix size large enough to fit all the possible SMILES
symbols. In addition to the previous concern, using a fixed-size matrix introduces the issue
of needing to determine the maximum possible size of the molecule. As the generation
of SMILES one-hot encoded matrices are relatively fast [26] and a changed matrix size
only requires a minor adjustment to the input layer of the neural network, the authors
suggest that generating new one-hot encoded SMILES matrices for new datasets is a more
practical approach.

Na
Cl

-
C

0 1 2 3 4 5 6 7 8 9

Figure 1. An example of the matrix prepared for the one-hot encoding for the dataset with the
maximal SMILES symbol length of 10 and 5 unique symbols.

Once the algorithm has passed through the entire dataset and determined all possible
unique symbols and maximal symbol length in the dataset, the proto-matrix which was
created in the previous step needs to be filled and stored for later use. The developed
algorithm will once more iterate over all of the SMILES strings. The algorithm will then
iterate over each symbol in the string. It will place a value of 1 in the column that is equal
to the position of the symbol in the string, in that row whose value is equal to the symbol.
The rest of the rows in the column will be filled with zeroes. This process will repeat for
each symbol until there are no more symbols left in the SMILES string. If there are columns
left in the matrix they are filled with zeros [27]. An example of the filled matrix is given
in Figure 2. The reason for this padding is that ANNs which are to be used in the later
modeling steps require all of the inputs to have uniform dimensions [28].

Na
Cl

-
C

0 1 2 3 4 5 6 7 8 9

1

1
1

1
1

0
0
0

0

0
0

0
0

0

0
0
0

0

0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

Figure 2. An example of the prepared one-hot matrix containing an example SMILES molecule
“CCl-NaCl”. Ones bolded for emphasis.

The prepared matrix is then appended with the parameters and the output value in
the general shape of (dim(parameters), (rows× columns× depth), output), with the total
dataset being given in the tensor of the shape (N, (dim(parameters), (rows × columns ×
depth), output)), where N is the number of elements [29]. For our case, the dimension of
the whole dataset is as follows: (94, (33, (21× 78× 1), 1)). The dataset in question is then
stored in the appropriate NPY format for further use in the regression modeling process.
The full algorithm, as just described, is also provided in pseudocode using the set notation
in Algorithm 1.
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Algorithm 1 The algorithm for transformation of SMILES strings into SMILES matrices

Require: D . SMILES dataset
U← ∅ . Unique symbols
m← 0 . Maximal symbol length
s← ”” . Empty symbol
for each SMILES ∈ D do

for each s ∈ SMILES do
if s /∈ U then
U_s

end if
if dim(SMILES) > m then

m← dim(SMILES)
end if

end for
end for
Tdim(U)×m . One-hot matrix to be filled
T← ∅ . Transformed dataset
P← ∅ . MP values from dataset
y← 0 . Output value
for each SMILES ∈ D do

i← 0 . For tracking vector columns
for each s ∈ SMILES do

P← DP
y← Dy
if s ∈ U then

Let x be such that Ux = s
Tx,i = 1
∀x′ ∈ dim(U) ∧ x′ 6= x =⇒ Tx′ ,i = 0

else
for each xin[1, dim(U)] do

Tx,i = 0
end for

end if
i← i + 1
T← (P, T, y)

end for
end for

2.2. Neural Network Regression

There are three approaches tested with neural networks, depending on the data that is
used in each separate case. Each of the three neural network architectures used corresponds
to one of the three data configurations. The architectures used are:

• Only SMILES encoded as a one-hot matrix;
• Only molecule parameters;
• The combination of both SMILES encoded as a one-hot matrix and molecule parame-

ters.

The individual architectures will be discussed in further subsections. All of the
architectures are custom to the problem at hand due to the input matrix size. For each
architecture, three different hyperparameters are adjusted—the number of epochs the
model is trained for [30], the batch size of the data used for the training [31], and the solver
algorithm used for the model training [32]. The hyperparameter values are adjusted using
the grid search (GS) method, which means that each possible combination of the three
hyperparameters is tested. The tested hyperparameter values are given in Table 1.



Biomedicines 2023, 11, 284 6 of 22

Table 1. Hyperparameter values used in the GS.

Hyperparameter Possible Values Count

Batch size 1, 2, 4, 8, 16, 32, 64 7

Epochs 1, 2, 5, 10, 25, 50, 75, 100, 150, 200, 250, 300 12

Solver SGD, RMSProp, Adam, Adadelta, Adagrad, Adamax, Nadam, FTRL 8

Total 672

The data is split into training and testing sets in an 80:20 ratio. The ratio is selected due
to the application of the five-fold cross-validation process, as mentioned in the previous
section [33]. Each of the ANNs is trained in the same manner with the forward and
backward propagation process. In this process, each individual data point is brought to
the input of the ANN. Then, the matrix containing the input data I is multiplied with the
individual weight matrices [34], or convoluted with the weight filters in the case of the
convolutional neural network (CNN) [35]. The values in these matrices/filters are initially
set to random values. This will lead to a predicted output at the end of the ANN. If we
denote this output with ŷ, then the entire vector of all predictions for each of the inputs
in the dataset can be expressed with Ŷ. The corresponding vector of real values, in this
case, the pIC50 values of the dataset, can then be expressed as Y = [y1, y2, · · · , yn]. This
allows us to calculate the vector of errors E according to the root mean square error (RMSE)
formula which was used for the model training in this research [36]:

E ← εn = (yi − ŷi)
2∀yi ∈ Yi, ŷi ∈ Ŷi (1)

The mean value of the error represents the general error of the dataset in the given
epoch. The loss function is then calculated as the mean of the dataset errors J (W) = E =
1
N ∑N

i=0 εi, where N is the number of the data points in the training set (75 or 76 depending
on the dataset fold used for evaluation), and W is the set of the weights [37]. This loss
is then backpropagated through the dataset where the values of the weights W are then
adjusted depending on the value of the loss function, as [38]:

We+1 =We −
α

N
· ∂J (W)

∂W
, (2)

where e is the current training epoch, and α is the learning rate, which is set as the default
value for each of the used solvers [39].

The code in this paper is implemented in Python 3.9.12 programming language. The
tensor manipulation that was previously described for transforming the dataset with one-
hot encoding was performed using the NumPy library version 1.23.0. The ANNs were
designed and trained in Tensorflow version 2.9.1. The score evaluation is performed using
the Scikit-Learn library, metrics submodule, version 1.1.1.

2.2.1. ANN for Regression Based on Molecule Properties

The first ANN used in the research is shown in Figure 3. It utilizes only the 33 MPs as
an input and is constructed as a standard multilayer perceptron (MLP) [40]. This means that
the network consists of the first layer (which has a size equal to the number of inputs-33),
one or more hidden layers, and an output layer consisting of a single neuron whose value
is equal to the value of the ANN output [38]. The base architecture (layer configuration) of
this and the following networks have been based on the conclusions of existing research
in the field [23,41–45]. The used network has a total of four hidden layers consisting of
32 neurons for the first and second hidden layers, 64 neurons total for the third hidden
layer, and 32 neurons in the last hidden layer. All of the layers are densely connected,
meaning that each neuron in a given layer has a weighted connection to all neurons in the
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subsequent layer. All of the layers use the rectified linear unit (ReLU) [46,47] activation
function, given as F (x) = max(0, x).

Figure 3. Architecture of the molecule property-based regression ANN.

2.2.2. CNN for Regression Based on SMILES

The second type of the neural network applied is a CNN that is meant to create a
model that regresses the pIC50 model based solely on the SMILES one-hot encoded matrix.
The reasoning is that the ANN should be capable of determining the information derived
from the SMILES in the shape of MPs themselves. Such an approach would save the time
needed to generate and storage space needed to store the extra info for the MP. The CNN
was shown to be a high-performing algorithm on tensor-shaped data [48].

The input to the network is the same as the previously stated image size (21× 78× 1).
Then, a series of three stacks of layers is repeated. Each stack consists of a two-dimensional
convolutional layer, batch normalization, activation, and a two-dimensional maximum
pooling layer. The two-dimensional convolutional layer performs the convolution operation
between the input of the layer (for the first layer this is the input matrix) and a filter
tensor [49]. The sizes of the filters in the used CNN are 3 × 3 × 64, 2 × 2 × 128, and
2× 2× 256, respectively. The values within the filter tensors are originally set to random
values and then adjusted according to the previously described training process [50]. The
second element of each of the three stacks is batch normalization. This layer normalizes
its input for each of the training batches. This allows for faster training due to the easier
reparametrization of the model [51]. The next layer in each of the stacks is the activation
layer, which applies the activation function ReLU to the entirety of the previous layer
output [52]. Finally, max pooling is applied. This technique takes the value of tensor
elements in the m× n grid and converts them to a single element which is equal to the
maximal value of the elements [53]. This lowers the computational cost of the training and
introduces a basic invariance to the internal (detailed) representation of the data in the
model [54]. The sizes of the max pooling filters used in the research are 3× 3, 2× 2, and
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2× 2, in order of the application. After the three stacks, the flatten layer is applied, which
takes the final tensor (shaped 1× 6× 256) and transforms it into a vector [55]. This vector
is then used in the same manner as the input used in the MLP described in the previous
section. This layer is then densely connected to a single hidden layer of 33 neurons, which
is in turn connected to the layer with a single neuron that will serve as the output of the
CNN. The CNN model is fully shown in Figure 4.

Figure 4. Architecture of the SMILES-based regression CNN.
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2.2.3. CNN for Regression Based on SMILES and Molecule Properties

The final variant of the ANN the research applies to the data is a hybrid CNN model
combining both of the previously described ANNs, the MLP and CNN. This combination
will allow for the processing of both the SMILES matrices and numerical MP data. The
idea behind this application is to combine both the input types and in doing that provide
more information to the learning framework of the ANN, in the hopes of increasing the
regression quality.

As shown in Figure 5, the first part of the network, up to the last three hidden layers
are equal to the ones described in the two previous subsections. The last layer of the two
architectures does not end in a single neuron but instead ends with a densely connected
layer of 32 neurons. Then, a concatenate layer [56] is utilized to stack both of the 32-element
vectors into a single 64-element vector. The combined outputs of two neural networks
are then densely connected to a pre-final layer of 32 neurons. This layer is finally densely
connected to the final output layer of a single neuron, the value of which will represent the
output of the hybrid ANN, as was the case with the two previously described ANNs.

2.3. Result Evaluation

The results are evaluated using two metrics—the coefficient of determination (R2) and
mean absolute percentage error (MAPE). R2 is a metric that has a range from < 0, 1.0 > and
shows the amount of variance explained between the real output set Y = [y1, y2, · · · , yn]
and the predicted output set Ŷ = [ŷ1, ŷ2, · · · , ŷn], where n is the number of the elements in
the output vectors [57]. The higher the R2 values are, the more of the variance is explained,
meaning a higher quality regression model [58]. R2 is calculated according to [59]:

R2 = 1− ∑n
i=0(yi − ŷi)

2

∑n
i=0(yi − y)2 . (3)

The other metric used is MAPE, which is the mean of absolute differences between
corresponding elements of the output sets Y and Ŷ, expressed as a percentage [60]. Due to
it being expressed as a percentage, it can easily be used to compare the precision of different
models. This metric is calculated as [61]:

MAPE =
∑n

i=0
yi−ŷi

yi

n
(4)

Because the dataset is relatively small, five-fold cross-validation has been applied. As
seen in Figure 6, the original dataset is split into the dataset uniformly randomly without
repetition, with each of the subsets containing an equal number of data points [62]. With the
five subsets, the process of training can be started. In each of the five repetitions, a different
subset is used as the testing set, while the remaining four subsets are mixed to create the
training set [63]. Each of these recombined training-testing datasets are referred to as a fold.
A prediction score is calculated on each of the training folds. These five scores are then
used to calculate the average of the scores across each of the folds, with the standard error.
The goal of this procedure is to avoid models that will overfit on individual data points, as
a well-generalizing model will have good scores on each of the subsets [64].



Biomedicines 2023, 11, 284 10 of 22

Figure 5. The regression CNN architecture combines the one-hot encoded SMILES and molecule prop-
erties.
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Figure 6. The illustration of the five-fold cross-validation procedure used in the research.

For the purposes of this research, the model is considered to have satisfying perfor-
mance if it fulfills the following two criteria, which have been determined depending on
the review of the previous research in the field (Table 2):

• Condition 1. achieves the R2 score higher than 0.99 when accounting for the lower
bound of scores according to the standard error σR2 across all five testing folds;

• Condition 2. achieves the MAPE error lower than 1.0% when accounting for the higher
bound of errors according to the standard error σMAPE across all five testing folds.

Table 2. Overview of the state-of-the-art research published in the field in the last two years.

Paper Reference Prediction Goal Method Most Notable Results
Achieved

[65] IC50 FE r2 ∈< 0.94, 0.95 >

[66] CD93 ANN AUC = 0.808

[67] CTSL QSAR R2 = 0.663

[68] IC50 AlexNet, GoogLeNet AUC ∈< 0.58, 0.98 >

[69] IC50 Graph CNN R2 = 0.52

[70] IC50/EC50 SVM, KNN, ANN r ∈< 0.60, 0.90 >

[71] IC50 HiDRA
RMSE = 1.0064

r = 0.9307

R2 = 0.8647

[72] Solvation free energy CIGIN2, DELFOS
MAE ∈< 0.5323, 0.5615 >

RMSE ∈< 1.178, 1.304 >

MAPE ∈< 28.21, 36.64 >

[73] IC50 SVM, ET, RF, Ridge, KNN R2 = 0.98

[74] pIC50 DL, XGBoost, RF, MLR, SVM R2 = 0.922

3. Results and Discussion

The results in Figure 7 show the performance of the best-performing model according
to the R2 scores, for each of the tested input variations. The best model using MP has
achieved the R2 score of 0.54± 0.36, while the model using SMILES achieved a slightly
better and significantly more stable score of 0.66± 0.04. According to the previously set
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condition 1, neither of the models fulfilled the score required for them to be considered
satisfactory. The model combining both input types achieved a significantly higher R2

score of 0.99± 0.001. This score is not only very high but is also very stable across folds
indicating a robust model. We can conclude that this model satisfies the previously set
condition 1.

When MAPE scoring of the best-performing models for each input type is observed
as presented in Figure 8, we can note that only the model which combined SMILES and MP
as input satisfied condition 2. The model based on the MP inputs has achieved the MAPE
of 1.83%± 0.95. Interestingly, the best-performing model when only SMILES are used as
an input shows a poorer performance than when evaluated using R2, which supports the
need for multi-metric evaluation as performed. The SMILES-based model has achieved
a MAPE of 3.98%± 0.11, which still shows it as a more stable model than MP, although
with poorer MAPE performance. Finally, the model based on both SMILES and MP inputs
achieved a comparatively low error of 0.009%± 0.009, again indicating it as the only model
to satisfy condition 2.

Table 3 shows the hyperparameters of the best-performing models for each of the input
variations. Due to the same models having the best performance when evaluated with
both metrics in all cases, only a single set of the models is given with scores corresponding
to the ones in Figures 7 and 8. All the models used different solvers, with relatively low
batch sizes. Interestingly, the number of epochs is relatively low for all the models, with
the best-performing model achieving the best results in only five epochs. The low number
of epochs needed to achieve the result in question, combined with the low standard error
of the best-performing model indicate that overfitting did not present a significant issue.

Figure 7. The best results achieved with each of the neural network configurations, evaluated using
R2 metric (higher is better), expressed as mean across folds and standard error (MP—molecular
properties, R2—coefficient of determination).
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Figure 8. The best results achieved with each of the neural network configurations, evaluated using
MAPE metric (lower is better), expressed as mean across folds and standard error (MP—molecular
properties, MAPE—mean absolute percentage error).

Table 3. Hyperparameters of the best-performing models for each of the observed input cases.

Batch Size Epochs Solver

MP 1 25 Adadelta

SMILES 2 10 FTRL

SMILES + MP 8 5 Adam

Due to all of the input variations having used the same hyperparameters during the
GS procedure, another comparison can be performed. The average scores across all the
tested hyperparameters can be compared to determine the overall performance of the tested
architectures as described in the previous section. This allows us to determine whether
the architecture designed for a given set of inputs had a comparatively good performance
overall. This is important for further application of the developed architectures in future
research, as it allows us to observe the robustness of the architectures and determine
whether the architecture achieved good performance on only a few hyperparameters or
did it perform well overall. This comparison is given in Table 4.

Table 4. The average results for N = 672 tested architectures in GS. (MP—molecular properties,
R2—coefficient of determination, MAPE—mean absolute percentage error, GS—grid search).

R2GS
σR2

GS MAPEGS σMAPE
GS

MP 0.135173025 0.748035001 4.269612071% 2.450460031%

SMILES 0.633779051 0.027208207 3.990937597% 0.097102445%

SMILES + MP 0.723649767 0.55142646 0.120139103% 0.201233967%

Table 4 shows that the overall best-performing models have been ones that used both
SMILES and MP as inputs. The model that used only MP as input is shown as the worst
in comparison to the other two. An interesting thing to note can be observed when the
scores for the models using only SMILES are viewed. While the overall performance of
SMILES-only models is poorer than the models which combined the two used inputs, the
models obtained using only SMILES show significantly smaller average percentile errors
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across folds. This indicates that these models have a tendency to be more stable on different
data, which is an important thing to note for future research.

Result Comparison to State-of-the-Art Research

Masarweh and Darsey (2022) [75] showed the application of functional correlation and
NETS AI-based software to determine the modified IC50 values. The prediction is based on
the molecule energy values and focuses on targeting the creation of Alzheimer’s disease
medicine. Cho et al. (2022) [65] demonstrate the extraction of numerical features from cell
images exposed to tested drugs. The goal of the research is to determine the IC50 value
without the need for the staining process. The authors use a linear relationship coefficient
(r2) and achieve a precision of between 0.94 and 0.95. Zheng et al. (2022) [66] focuses on the
determination of a different factor, Cluster of Differentiation 93 (CD93), as a predictor of
the molecular subtype and therapy response, with a focus on bladder cancer. The authors
perform a classification task and achieve the area under the receiver operating characteristic
curve (AUC) of 0.808. Begum and Parvathi (2022) [67] use quantitative structure–activity
relationship (QSAR) models to predict cathepsin L (CTSL) inhibition due to SARS-COV-2
virus causing a decrease in the factor. Authors achieve an R2 score of 0.663. Lee and Nam
(2021) [68] utilize CNN architectures AlexNet and GoogLeNet for predicting the IC50 value
for cell growth inhibition in cancer patients. The results are evaluated using AUC in micro-
and macro-configurations due to multiple classes. The achieved results range between 0.58
and 0.98, depending on the configuration and the targeted dataset. Shishir et al. (2022) [69]
demonstrate the prediction of new drug properties, specifically IC50 using graph CNNs.
The authors apply cross-validation on the dataset and achieve an R2 score of 0.52. Rajput et
al. (2021) [70] demonstrate an application of various methods in order to predict IC50/EC50
of medicines repurposed for COVID-19, from ’DrugRepV’ database. The authors apply
the support vector machines (SVM), k-nearest neighbors (KNN), and ANNs. The achieved
results are evaluated using Pearson’s correlation coefficient and range between 0.60 and
0.90. Jin and Nam (2021) [71] propose HiDRA-Hierarchical Network for Drug Response
Prediction with Attention, which is an interpretable AI-based model which can be used for
predicting drug responses in cancer cells, molecular pathways, and drug levels. HiDRA
system shows a prediction RMSE of 1.0064, Pearson’s correlation coefficient of 0.9307, and
an R2 value of 0.8647. Immidisetty and Agrawal (2021) [72] apply pre-constructed AI-based
solutions chemically interpretable graph interaction network version 2 (CIGIN2) and deep
learning model for solvation-free energies in generic organic solvents (DELFOS) on the
problem of prediction the solvation free energy. They achieve a MAE of 0.5323, RMSE of
1.304 and MAPE of 28.21%. Gong et al (2020) [73] have demonstrated the application of 2D-
and 3D-QSAR methods, SVMs, extra tree (ET) regressor, random forest (RF), ridge regressor,
KNN, and others. The authors apply the aforementioned methods to the investigation of
drugs addressing diabetes mellitus, and achieve the best results of 0.98 when evaluated
using R2, with ET regressor. Hermansyah et al. (2021) [74] use deep learning (DL), gradient-
boosted trees (XGBoost), RF, MLR, and SVMs to construct QSAR models achieving an R2

score of 0.922. An overview of the discussed articles is given in Table 2.
Comparing the best-achieved results from the presented research, R2 = 0.99± 0.001

and MAPE = 0.009%± 0.009, for the model combining SMILES and MP data, we can see
that the results are satisfactory. Compared to the best results regarding R2, namely [73]
which achieved R2 = 0.98, it can be noted that the result is slightly better than what the
authors achieved. It should be noted that authors in [73] did not use cross-validation,
which could result in poorer results. Compared to the other research which used R2 for the
evaluation [67,69,71,74] the presented models achieved significantly better results showing
R2 improvement in the range between 0.068 and 0.47. Even the poorer scoring models,
based on MP and SMILES input data, achieve higher scores than some previously published
research, such as [69], the only of the compared papers that used MAPE, allowing for the
direct comparison is [72]. As seen in the table 2, the authors achieved the MAPE in the
range of 28.21 at the lowest, and 36.63 at the highest. This shows a significant improve-
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ment, compared to the best results achieved by the SMILES+MP model. Even the poorer
results, achieved by MP and SMILES-based models by themselves show improvement in
comparison to the results achieved by the authors.

4. Conclusions

The goal of the presented research was to determine the possibility of using the
AI/ML-based ANN algorithms to derive models for the approximation of the pIC50 factor
of various medications contained in a publicly available dataset.

(RQ.1.) The achieved results show that ANNs can be used to approximate the value in
question, in some configurations, with the best-performing model achieving scores that
satisfy both conditions set (lower bound of R2 > 0.95, higher bound of MAPE < 1.0%).
The achieved scores indicate that the model in question has a high performance, and the
cross-validation results performed indicate that the model is robust on the entirety of the
data available for validation. (RQ.2.) The achieved scores show that the regression model of
satisfactory quality can only be achieved when a custom architecture that combines the MP
and SMILES inputs is applied. Still, observing the performance across the hyperparameters
tested in GS shows that the model based on only SMILES has the ability to achieve models
which are extremely stable across the various hyperparameter ranges, although performing
poorly in comparison to the models based on MP and SMILES inputs. This characteristic
is something that should be considered in further research. The achieved results indicate
that such research should focus on methods combining molecular notation and properties,
with the possible addition of models which are based on just molecular notation (SMILES).
Based on the research results, models based on only the MP of compounds may not provide
satisfactory performance, at least not without significant changes to the ones presented
here. (RQ.3.) The hyperparameters of the models show that a large number of epochs
are not necessary to achieve good results, with the longest training to achieve the best
results being 25 epochs out of the maximum 300, for the MP-based model. The same can
be concluded in the case of batch sizes. The maximum, in this case, is the batch size of 8
in the case of the models based on SMILES+MP data. As the maximum batch size tested
was 64, this indicates that such a wide range of hyperparameters as used in the presented
research is not necessary. No regularity can be seen in the solver selection. If the future
research hyperparameter range (e.g., for training the architectures on a larger dataset) was
limited to the next largest hyperparameter tested after the largest hyperparameter that
was used to achieve the best-performing models, a significant decrease in training time
would be achieved. With the described training setup only 240 models would be trained,
compared to the 672 in this research. Especially considering that the number of epochs is
one of the most influencing hyperparameters for model training, time-savings could be
significant. Some possible concerns exist with the presented research. The first of which is
the low number of data points in the dataset. This concern arises from the wish to focus
the research on a relatively small dataset, to examine if the presented methods could be
used on a lower number of compounds that are being developed in order to address a
particular disease (such as the mentioned COVID-19). In the suggested case, a low number
of pharmaceuticals may be available for further training. The concern was addressed
via the application of a cross-validation technique to test the performance of the models
further and ascertain their robustness as much as possible. Another concern is the lack of
architecture variation beyond the tested hyperparameters. The authors designed the layers
and activation functions of the networks based on past research and experience. While it
is possible that better results could have been achieved with larger networks, this specific
issue was not the main concern of the research. As mentioned, the results show that the
main research goal of developing a model for precise approximation of the pIC50 factor on
the provided dataset has been achieved fully.

As presented, the paper has some limitations which need to be acknowledged. The
main limitation of the paper is the limited size of the dataset used for the modeling, at
only 94 data points. While this has been partially addressed with the application of cross-
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validation, it has to be noted that this may influence the prediction quality on the larger
dataset. Another thing to note is that the developed models have not been externally
validated, meaning that their performance has not been tested outside of the limited dataset
used in the research. These steps are something that would have to be addressed before
the application of the system as developed in real medicine development. Finally, it has
to be noted that the dataset used for research contains relatively old data, and significant
research effort has been expanded since widening the knowledge regarding COVID-19 and
medications. So, while the presented paper can be used as a proof of concept, indicating
the possibility of applying the described techniques to determining the pIC50 of COVID-19
medicines, the research should be further expanded using not only a larger number of but
also more modern medicines in the future.

Future work may focus on testing the developed models on different datasets consist-
ing of MP and SMILES, with the goal of regressing the pIC50 value, in order to determine
which further tuning may be necessary. In this case, special focus should be given to the
process of transfer learning and cross-testing between different sets of compounds. This
process would allow us to determine whether the models can be applied to different data
while keeping a satisfactory performance and if transfer learning can be applied for further
model tuning in case the performance needs to be improved.
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Abbreviations
The following abbreviations are used in this manuscript:

AUC Area under receiver operating characteristic curve
ANN Artificial neural network
CD93 Cluster of differentiation 93
CIGIN 2 Chemically interpretable graph interaction network version 2
CORREL Correlation coefficient
COVAR Covariance coefficient
CNN Convolutional neural network
CTSL Cathespin L
DELFOS Deep learning model for solvation-free energies in generic organic solvents
DL Deep learning
ET Extra tree regressor
GS Grid search
KNN k-nearest neighbours
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MAE Mean absolute error
MAPE Mean absolute percentage error
MAX Maximum
MIN Minimum
MLP Multilayer perceptron
MP Molecular properties
pIC50 Negative log of IC50 expressed in molars
R2 Coefficient of determination
RF Random forest
RMSE Root mean square error
STD Standard deviation
SMILES Simplified molecular-input line-entry system
SVM Support vector machine
XGBoost Gradient boosted trees

Appendix A. Statistical Description of the Dataset

The statistical distributions of the used dataset are included here, namely the descrip-
tive statistics and the distributions of the dataset.

Appendix A.1. Descriptive Statistics

Table A1. Descriptive statistics of the individual numerical values in the dataset.

Molecular Weight XLogP Exact Mass Monoisotopic Mass

MEAN 364.386 3.08511 363.87 363.827

STD 99.4234 1.63871 99.2662 99.2078

MIN 0 −0.6 0 0

MAX 565 7.3 563.814 561.817

UNIQUE 84 44 84 84

CORREL −0.1924 0.0301 −0.1935 −0.1938

COVAR −16.801 0.04331 −16.863 −16.883

TPSA Complexity Charge HBondDonorCount

MEAN 96.6617 553.34 0 0.64894

STD 36.2097 178.082 0 0.78573

MIN 0 0 0 0

MAX 197 960 0 3

UNIQUE 56 82 1 4

CORREL −0.2676 −0.2871 0 −0.4831

COVAR −8.5093 −44.903 0 −0.3333

HBondAcceptorCount RotatableBondCount HeavyAtomCount IsotopeAtomCount

MEAN 5.46809 3.78723 24.2553 0

STD 1.94385 2.10923 6.38873 0

MIN 0 0 0 0

MAX 10 9 37 0

UNIQUE 10 10 21 1

CORREL −0.1747 −0.3081 −0.2459 0

COVAR −0.2983 −0.5706 −1.3798 0
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Table A1. Cont.

AtomStereoCount DefinedAtomStereoCount UndefinedAtomStereoCount BondStereoCount

MEAN 0.12766 0 0.12766 0.01064

STD 0.39442 0 0.39442 0.10314

MIN 0 0 0 0
MAX 2 0 2 1

UNIQUE 3 1 3 2

CORREL −0.0881 0 −0.0881 −0.0375

COVAR −0.0305 0 −0.0305 −0.0034

DefinedBondStereoCount UndefinedBondStereoCount CovalentUnitCount Volume3D

MEAN 0.01064 0 0.96809 263.753

STD 0.10314 0 0.17672 70.6216

MIN 0 0 0 0

MAX 1 0 1 388.4

UNIQUE 2 1 2 89

CORREL −0.0375 0 −0.0133 −0.2672

COVAR −0.0034 0 −0.0021 −16.572

XStericQuadrupole3D YStericQuadrupole3D ZStericQuadrupole3D FeatureCount3D

MEAN 11.2865 3.59574 1.50862 8.12766

STD 4.22451 1.66961 0.56382 2.22031

MIN 0 0 0 0

MAX 22.7 8.28 2.96 13

UNIQUE 85 85 71 10

CORREL 0.19932 −0.3619 −0.2698 −0.2553

COVAR 0.73942 −0.5306 −0.1336 −0.4977

FeatureAcceptorCount3D FeatureDonorCount3D FeatureAnionCount3D FeatureCationCount3D

MEAN 3.59574 0.62766 0.2234 0.29787

STD 1.33858 0.77576 0.48977 0.50438

MIN 0 0 0 0

MAX 7 3 2 2

UNIQUE 8 4 3 3

CORREL 0.01924 −0.4845 0.22643 −0.2826

COVAR 0.02261 −0.3301 0.09739 −0.1252

FeatureRingCount3D FeatureHydrophobeCount3D ConformerModelRMSD3D EffectiveRotorCount3D

MEAN 3.12766 0.25532 0.77021 4.78723

STD 1.01847 0.48496 0.25562 2.37981

MIN 0 0 0 0

MAX 6 2 1.4 10.2

UNIQUE 6 3 6 26

CORREL −0.0676 −0.2397 −0.3196 −0.363

COVAR −0.0604 −0.1021 −0.0717 −0.7586

ConformerCount3D pIC50

MEAN 8.59574 −1.0514

STD 3.06671 0.88758

MIN 0 −2.699

MAX 10 1.22185

UNIQUE 9 73

CORREL 0.0551 1

COVAR 0.14837 0.77942
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Appendix A.2. Dataset Distribution

Figure A1. The distributions of the input data.
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