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Abstract: Photoactivation of 3% hydrogen peroxide with a 445 nm diode laser represents a relatively
new, insufficiently researched antimicrobial method in the treatment of peri-implantitis. The purpose
of this work is to evaluate the effect of photoactivation of 3% hydrogen peroxide with a 445 nm
diode laser, and to compare the obtained results with 0.2% chlorhexidine treatment and 3% hydrogen
peroxide treatment without photoactivation, in vitro, on the surface of dental implants contaminated
with S. aureus and C. albicans biofilms. Previously, 80 infected titanium implants with S. aureus and
C. albicans cultures were divided into four groups: G1-negative control (no treatment), G2-positive
control (0.2% chlorhexidine), G3 (3% hydrogen peroxide), and G4 (photoactivated 3% hydrogen
peroxide). The number of viable microbes in each sample was determined by the colony forming unit
(CFU) count. The results were statistically processed and analyzed, showing a statistically significant
difference across all groups compared to the negative control (G1), and the absence of a statistically
significant difference between groups G1–G3. The new antimicrobial treatment, according to the
results, could be worthy of further analysis and research.

Keywords: photoactivation; 3% hydrogen peroxide; diode laser; periimplantitis therapy

1. Introduction

Dental implants present a valuable therapeutic choice in the treatment of partial
and complete edentulousness. However, despite the high degree of success of dental
implants, vast experience and technological improvements during the last 60 years, their
frequent use has also brought some very specific problems [1,2]. Peri-implant diseases
(peri-implant mucositis and peri-implantitis) are probably the most significant issues
associated with dental implants [3,4]. Peri-implant mucositis is defined as the presence of
an inflammatory infiltrate in soft tissue induced by plaque, without loss of peri-implant
bone, while peri-implantitis is a condition in which, along with soft tissue inflammation, a
bone loss is present [5]. If peri-implantitis is not recognized in time and properly treated,
implant loss may happen. According to Atieh et al. [6], as many as 50% of placed implants
show signs of peri-mucositis, and 12–43% of implants show signs of peri-implantitis. The
role of microorganisms in the development of these pathological conditions is crucial
and more than 20 different species are routinely found in swabs taken from infected
implants [5,7]. One specific microorganism, Staphylococcus aureus, plays a significant role
in the development of peri-implantitis due to its affinity for the titanium surface of the
implant and the formation of biofilms or a substrate for the growth of biofilms of other
cultures, the so-called “early colonizer” [8,9]. Biofilm is defined as a microbial community
of cells embedded in a polymer extracellular matrix, the creation of which is caused by
microorganisms present in the matrix. Organisms inside biofilms are more resistant to
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different antimicrobial treatments than free, planktonic organisms [10]. Candida albicans is
the most frequently isolated fungus in the human oral cavity. Despite being considered a
commensal species, under certain conditions, such as periods of antibiotic use or periods of
immunosuppression, it can cause mucosal infection [11]. C. albicans is often present in the
peri-implant sulcus, both in healthy people and in patients with peri-implantitis, where it
also creates a substrate for the formation of biofilms and supports inflammation [12].

The treatment of peri-implant diseases is a complex task due to the difficult access
to the implant surface, limited visibility, the roughness of the titanium surface, and the
pathogenicity of the microorganisms involved in the pathogenesis of these diseases [13–15].
Therefore, over time, numerous antimicrobial procedures and protocols have been de-
veloped. Scarano et al. [14] made an overview of the available treatments in a following
manner: (1) mechanical debridement using plastic curettes, rubber polishers, ultrasonic
scalers or air-powder abrasives; (2) chemical decontamination using chlorhexidine, citric
acid, tetracycline, hydrogen peroxide, etc.; (3) dental laser-based treatments. Described pro-
cedures and techniques can also be mixed or combined, as in the newer study carried out
by Alovisi et al. [16], where triple antibiotic paste and a glycine powder air-flow abrasion
were used to fight microorganisms. However, none of the usual methods can completely
remove or inactivate peri-implant pathogens due to previously mentioned factors, such as
complex anatomical relationships and/or the specific implant surface [17]. Furthermore,
it is even possible to damage this implant surface using certain antimicrobial treatments
agents, which can then impair the healing of peri-implant tissues [18].

Although many treatment modalities exist, chlorhexidine digluconate (CHX) com-
bined with manual debridement is still considered to be the golden standard in the treat-
ment of periodontal and peri-implant diseases [19]. Hydrogen peroxide (H2O2) has been
used in dentistry as a mouthwash to prevent plaque and as an antiseptic after oral surgery
for more than 100 years [20], and it is also used in the treatment of peri-implantitis, but
likely not as often as CHX. Photo-activation of H2O2, with the aim of improving the antimi-
crobial effect in periodontitis therapy, is a potentially interesting idea examined in the work
of Mahdi et al. in 2015 [21].

They found a stronger disinfection potential when H2O2 was activated by LED light
with a wavelength of 440–480 nm, compared to non-activated H2O2. Guided by this idea,
the authors of this study wanted to examine the possibility of H2O2 activation with a
445 nm diode laser, and augmentation of its antimicrobial effect. According to authors
knowledge, there is currently no research on this topic.

The purpose of this work is to evaluate the effect of photoactivation of 3% hydrogen
peroxide with a 445 nm diode laser and compare the obtained values with chlorhexi-
dine and hydrogen peroxide without photoactivation, in vitro, on the surface of implants
contaminated with S. aureus and C. albicans biofilms.

The hypotheses of this study are:

1. Hydrogen peroxide activated by a 445 nm diode laser shows better results in dis-
infection of dental implants compared to hydrogen peroxide used without 445 nm
photoactivation.

2. Hydrogen peroxide activated by a 445 nm diode laser shows equal or better results in
disinfection of dental implants compared to chlorhexidine treatment.

2. Materials and Methods

The research was conducted at the Department of Oral Surgery of the School of dental
medicine in Zagreb and at the Clinical Institute for Clinical and Molecular Microbiology
of KBC Zagreb, Croatia. Eighty Zimmer Biomet Tapered Screw-Vent MTX 4.1/10 mm
titanium implants (Zimmer Biomet, Palm Beach Gardens, FL, USA) were used in the study.
According to Ehrenfest et al. [22], these implants are grade 5 titanium core, with a surface
modified by sand-blasting (resorbable blasting media—RBM like calcium phosphate). The
surface was microrough, nano-smooth and homogenous. The implants used in this study
were contaminated with cultures of S. aureus and C. albicans isolated from clinical samples
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at University hospital centre Zagreb. Bacterial and fungal strains were grown separately
on Columbia agar for 72 h, after preparation of separate bacterial and fungal suspensions
using a thioglycolate broth. They were then mixed into a common suspension. An optical
densitometer (Densimat, Biomerieux, Marcyl’Etoile, France) determined the density at
600 nm, which corresponded to 1 × 108 CFU/mL. All dental implants were immersed
in 0.3 mL of mixed bacterial–fungal suspension for 14 days under aerobic conditions, at
a temperature of 35 ◦C. The suspension was contained with S. aureus and C. albicans, at
a density of 0.5 McFarland. After that, all implants were randomly distributed into four
groups, so that there were 20 implants per group (Figure 1). The implants were removed
from the test tubes with sterile tweezers. The implants were then put on sterile gauze and,
depending on which group they were in, went through the right cleaning process.
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Figure 1. Test sample distribution, contamination and disinfection outline.

2.1. Disinfection Protocols

The first group (G1) represented the negative control. This group was not subjected
to any disinfection protocol and served as a reference in assessing the effectiveness of a
particular disinfection protocol.

The second group (G2) represented the positive control. That group was treated with
0.2% CHX. CHX was applied on a sterile cotton pellet, and the surface of the implant was
rubbed with it for 60 s.

The third group (G3) was treated with 3% hydrogen peroxide. H2O2 was applied on a
sterile cotton pellet, and the surface of the implant was rubbed with it for 60 s.

The fourth group (G4) underwent the same procedure as G3, with the following
difference: 60 s after treatment with 3% hydrogen peroxide, the samples were illuminated
with a SiroLaser Blue laser (Dentsply Sirona, Bensheim, Germany) with the following
parameters: wavelength of 445 nm, power of 1 W, continuous beam (CW), 320 mm laser
fiber tip and 60 s exposure time (Figure 2). The distance of the laser tip from the implant
surface was approximately 1–2 mm, with a constant movement of 1 mm/s along the
implant surface (freehand movement).
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Figure 2. Surface decontamination with SiroLaser Blue laser (Dentsply Sirona, Bensheim, Germany)
after treatment with 3% hydrogen peroxide.

2.2. Collection of Samples

After the processing of the implants, the surface of each of them was scraped with
the help of a sterile plastic inoculating loop in such a way, that the threads of the implants
were scraped with it twice (Figure 3). Each sample was then placed in 250 µL of saline
and vortexed on a vibro-mixer (Corning® LSETM vortex mixer, Corning, NY, USA) for
40 s to separate bacteria and fungi. Then, the loops were discarded, and the physiological
solution into which the bacteria and fungi were scraped from the implant were transferred
with to the blood agar, in a volume of 50 µL. Then, 100 µL of physiological solution, with
suspended S. aureus and C. albicans, was transferred to the wells of a microtiter plate filled
with 100 µL of brain–heart broth.
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Figure 3. Implant surface sampling with sterile plastic inoculating loop. From the first well, which
contains a total of 200 µL (100 µL suspension + 100 µL brain–heart broth), 100 µL was transferred to
the next well, and so on, until a dilution of 10−7 was reached (Figure 4). From each well, 50 µL was
inoculated onto blood agar. The plates were then incubated at 35 ◦C for 48 h. Then, the growth of
microbial cultures was read in such a way, that the CFU of individual pathogens was counted, and
the number was multiplied by the degree of the dilution (Figure 5).
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The formation of bacterial and fungal plaques was confirmed through an SEM device
(JSM-7800 F Schottky Field Emission Scanning Electron Microscope, JEOL Ltd., Tokyo,
Japan), as seen in Figure 6.

Biomedicines 2023, 11, x FOR PEER REVIEW 5 of 13 
 

 
Figure 3. Implant surface sampling with sterile plastic inoculating loop. From the first well, which 
contains a total of 200 µL (100 µL suspension + 100 µL brain–heart broth), 100 µL was transferred to 
the next well, and so on, until a dilution of 10−7 was reached (Figure 4). From each well, 50 µL was 
inoculated onto blood agar. The plates were then incubated at 35 °C for 48 h. Then, the growth of 
microbial cultures was read in such a way, that the CFU of individual pathogens was counted, and 
the number was multiplied by the degree of the dilution (Figure 5). 

 
Figure 4. Dilution of samples up to a concentration of 10−7. Figure 4. Dilution of samples up to a concentration of 10−7.

Biomedicines 2023, 11, x FOR PEER REVIEW 6 of 13 
 

 
Figure 5. The growth of microbial cultures, ready for CFU/mL counting. 

The formation of bacterial and fungal plaques was confirmed through an SEM device 
(JSM-7800 F Schottky Field Emission Scanning Electron Microscope, JEOL Ltd., Tokyo, 
Japan), as seen in Figure 6. 

 
Figure 6. SEM images of G1–G4. Microbial biofilms were visible on the surface of the implant in G1, 
while they were practically absent in the remaining images. 

Figure 5. The growth of microbial cultures, ready for CFU/mL counting.



Biomedicines 2023, 11, 1002 6 of 12

Biomedicines 2023, 11, x FOR PEER REVIEW 6 of 13 
 

 
Figure 5. The growth of microbial cultures, ready for CFU/mL counting. 

The formation of bacterial and fungal plaques was confirmed through an SEM device 
(JSM-7800 F Schottky Field Emission Scanning Electron Microscope, JEOL Ltd., Tokyo, 
Japan), as seen in Figure 6. 

 
Figure 6. SEM images of G1–G4. Microbial biofilms were visible on the surface of the implant in G1, 
while they were practically absent in the remaining images. 
Figure 6. SEM images of G1–G4. Microbial biofilms were visible on the surface of the implant in G1,
while they were practically absent in the remaining images.

2.3. Statistical Analysis

Descriptive statistics of CFU/mL were performed for S. aureus and C. albicans, depend-
ing on the disinfection protocol implemented. Furthermore, a Kruskal–Wallis ANOVA
by Ranks analysis was performed, especially for S. aureus and especially for C. albicans,
to prove whether there was a difference between the studied groups. It was followed
by post hoc multiple comparison p-values (2-tailed), in order to show where there is a
statistically significant difference. Then, the protocol was compared individually by the
Mann–Whitney U test with continuous correction. Statistical calculations were performed
with the TIBCO Data Science Workbench (TIBCO Software, Inc., Palo Alto, CA, USA),
software version 14.0.0.15.

3. Results

Descriptive statistics of CFU/mL for all protocols for S. aureus are shown in Table 1. In
the negative control, the highest proportion of colonies per mL was present at 2.86 × 108,
followed by the group disinfected with hydrogen peroxide (G3) with 134 CFU/mL, the
group of laser-activated hydrogen peroxide (G4) with 45 CFU/mL, and the positive control
(G2) with the smallest proportion of 4 CFU/mL. Differences between groups (Mann–
Whitney U test) are shown in Table 2 and graphically in Figure 7.

Table 1. Descriptive statistics of the amount of CFU/mL of S. aureus under different protocols.

CFU/mL S. aureus Sample Size Medium Value Minimal Value Maximal
Value

Standard
Deviation

Negative control 20 286,731,516 20.00 2,000,000,000 508,403,118
Positive control 20 4 0.00 20 8.21

3% H2O2 20 134 0.00 2000 449.75
Laser +

3% H2O2
20 45 0.00 200 79.97

CFU/mL—colony-forming units per milliliter.
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Table 2. Comparison of the success of individual protocols in the eradication of S. aureus: G1–negative
control, G2–positive control, G3–hydrogen peroxide, and G4–laser-activated hydrogen peroxide.

Mann-Whitney U Test
By Variable CFU/mL

S. aureus
Marked Tests Are

Significant at p < 0.05

Protocol p-value 2 × 1 sided exact p

G1 vs. G2 0.000000 0.000000

G2 vs. G3 0.059363 0.120700

G2 vs. G4 0.326615 0.461169

G3 vs. G4 0.501578 0.564832
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Figure 7. Comparison of the success of individual protocols in the eradication of S. aureus:
G2—positive control, G3—hydrogen peroxide, and G4—laser-activated hydrogen peroxide.

Descriptive statistics of CFU/mL for all protocols regarding C. albicans are shown in
Table 3. In the negative control, the highest proportion of colonies per mL was present at
4.06 × 105, followed by the group disinfected with hydrogen peroxide (G3) with 24 CFU/mL,
the positive control (G2) with 20 CFU/mL, and the laser-activated hydrogen peroxide group
(G4) with the smallest proportion of 5 CFU/mL.

Table 3. Descriptive statistics of CFU/mL of C. albicans under different protocols.

CFU/mL C. albicans Sample Size Medium
Value

Minimal
Value

Maximal
Value

Standard
Deviation

Negative control 20 406,240 0.00 4,000,000 959,808
Positive control 20 20 0.00 200 61.56

3% H2O2 20 24 0.00 200 60.73
Laser + H2O2 20 5 0.00 40 11.00

CFU/mL—colony-forming units per milliliter.
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Furthermore, there was no statistically significant difference in C. albicans eradication
between the individually tested protocols: positive control (G2), hydrogen peroxide (G3),
and laser-activated hydrogen peroxide (G4) (Table 4 and Figure 8).

Table 4. A performance comparison of different protocols in the reduction of the C. albicans CFU.

Multiple Comparisons p-Values (2-Tailed); CFU/mL C. albicans
Independent (Grouping) Variable: Protocol

Kruskal–Wallis Test: H (3, N = 80) = 36.32679 p = 0.0000

Protocol
Negative
Control
R:63.30

Positive Control
R:30.10

3% H2O2
R:36.00

Laser + H2O2
R:32.60

Negative control 0.000037 0.001219 0.000177
Positive control 0.000037 1.000000 1.000000

3% H2O2 0.001219 1.000000 1.000000
Laser + H2O2 0.000177 1.000000 1.000000

CFU/mL—colony-forming units per milliliter.
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4. Discussion

This research primarily examined the possibility of improving the antimicrobial effi-
ciency of 3% H2O2 in peri-implantitis therapy, using diode laser activation with a wave-
length of 445 nm, compared to non-activated H2O2 and the current gold standard of 0.2%
CHX [23]. All tested groups showed a massive, significant reduction in microbial CFU
count when compared to the negative control. As for the hypothesis, the first hypothesis
was only partially accepted. Although the laser-activated group clearly showed better
results in the microbial CFU count, there was no statistically significant difference after
the statistical analysis, likely due to the sample size. The second hypothesis was accepted,
since the analysis revealed comparable results between CHX and H2O2 groups. H2O2 is
one of the disinfectants used in dental medicine. Oxygen radicals (ROS) generated by the
application of H2O2 have a high affinity for bacteria and the extracellular matrix of bacteria,
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and a strong oxidizing effect. Additionally, they ensure the creation of active oxygen foam
that also has mechanical cleaning properties. ROS (hydroxyl radicals) can theoretically
damage healthy tissue cells, but ROS generated by the application of 3% H2O2 have a rapid
breakdown into water and oxygen molecules [24]. Also, the incidence of ROS, which occurs
with photoactivation of 3% H2O2, was examined, and it was shown that the formation of
ROS stops when the photoactivation with the laser device stops [25]. In the research of
Wiedmer et al. [26], a comparison of the effects of CHX and H2O2 on the biofilm mass on
the implant surface was shown. It has been proven that H2O2 has a strong effect on actively
removing the mass of biofilm, while CHX has a slightly weaker effect on reducing the said
mass, but it certainly has a bactericidal effect on the microbial community and prevents
the regrowth of bacteria. The current study showed a roughly equal effectiveness of CHX
and H2O2 in eradicating S. aureus and C. albicans. This study was conducted on the surface
of real dental implants rather than titanium discs, in order to simulate in vivo conditions
and obtain more realistic results [27,28]. C. albicans and S. aureus cultures were chosen for
research due to the simple cultivation, control of the microorganisms themselves, and also
due to the fact that they create polymicrobial biofilms (“early colonizers”) and actively
participate in peri-implant infections [13,29].

Diode lasers belong to the newer group of techniques combating the causative agent of
periodontitis [30]. They demonstrate a disinfection effectiveness in two main ways: through
photothermal and/or photodynamic therapy. The effectiveness of photothermal therapy
is based on the thermal energy generated by the laser during radiation emission. The
generated thermal energy transfers indirectly through the environment or directly on the
bacterial cell, acting fatally on it [31]. Regarding the energy levels of lasers, proper energy
dosage is crucial: too little energy will not be sufficient to eradicate enough microorganisms
and too much energy could cause damage to the neighboring tissues [32]. Usual antimi-
crobial energy levels in peri-implant decontamination studies range from 0.5 to 3 W in
continuous (CW) or pulsed-mode (energy emission types) [32–37]. Photodynamic therapy
with diode lasers is based on the light activation of the photosensitive agent in presence of
oxygen with a low-energy (sub-ablative) laser beam. There is no heating, and thus no risk
of damage to the surrounding tissues [38]. The principles of photodynamic therapy are:
photosensitive molecules (the dye) bind to target microorganisms on the implant surface,
which is then irradiated with a light of a certain wavelength in the presence of oxygen.
Light-excited photosensitizers undergo type I (electron transfer) and/or type II (energy
transfer) reactions to produce reactive oxygen species (ROS), resulting in the disruption
of the bacterial cell wall and/or normal metabolism, leading to bacterial cell damage or
death [38,39]. The described mechanisms do not harm human cells, as these cells have
mechanisms to survive oxidative stress (catalase and superoxide dismutase enzymes).

The development of microbial resistance to PDT is not probable, as the bactericidal
effect is achieved through the action of oxygen radicals on the cellular components of the
micro-organisms [38].

In the current research, a new diode laser, with a wavelength of 445 nm, was used to
test the possibility of activating 3% H2O2. H2O2 exhibits maximum absorption at wave-
lengths of approximately 400 nm. The idea was to try to activate H2O2 photodynamically,
and also photothermally (by heating) at the same time; therefore, the energy settings were
set to 1 W CW for 60 s, with constant movement of the laser optical fiber (1 mm/s) along
the surface of the implant, from a distance of approximately 2 mm. The thermal effect
of these settings was not measured, although the settings, combined with the constant
displacement/freehand movement of the laser fiber tip in a wet environment (movement
prevents excessive heat accumulation on one place and allows cooling microbreaks), could
be considered as relatively safe and were therefore chosen for research [32–36]. Never-
theless, additional testing should be done regarding the temperature rise in the specific
protocol and its effects on the surrounding tissue.

Chemical reactions in the activated H2O2 environment were not assessed. Potential
activation/antimicrobial augmentation was assessed only via the CFU count, which is a
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more basic, simpler approach. Complex chemical analysis should be done in future similar
studies to closer analyze the interaction of this specific laser wavelength and H2O2.

The specified wavelength of the diode laser was first examined in the concrete dis-
infection protocol by Katalinic et al. [40], however not in peri-implant conditions, but on
endodontic intracanal biofilms composed of E. faecalis, C. albicans, and S. aureus, where
promising results were obtained. The same laser was then tested in peri-implantitis therapy,
but as part of photodynamic therapy with 0.1% riboflavin, where a positive antimicrobial
effect was also demonstrated [41]. By reviewing the literature available to the authors, it
is not possible to find research similar to the current one. However, research examining
the impact of laser energy on H2O2 and various pathogens exists. In the study by Ikai
et al. [42], the authors analyzed the effect of activated hydrogen peroxide on cultures of
S. mutans, A. actinomycetemcomitans, E. faecalis, and S. aureus. It has been proven that
hydrogen peroxide, activated by a laser with a wavelength of 405 nm, has the ability to
eliminate all four pathogens within 3 min, which is not the case when using lasers or
H2O2 as independent treatments. Photoactivation of H2O2, with the aim of improving
the antimicrobial effect, was also examined in the work of Mahdi et al. in 2015 [21]. The
authors proved a stronger disinfection potential when H2O2 was activated by LED light
with a wavelength of 440–480 nm, compared to non-activated H2O2. In contrast to the
current work, the photoactivation was performed with LED light and not with a diode laser
that has monochromatic, coherent, and collimated light radiation. In two scientific papers,
Odor et al. [43,44] investigated the antimicrobial effect of hydroxyl radicals produced by
diode laser photoactivation, in combination with conventional mechanical periodontitis
therapy. A diode laser with a wavelength of 940 nm and a power of 1 W was used. The
laser-activated H2O2 group showed the best results. In relation to the other research men-
tioned, that research was not done in vitro, but in vivo, on patients with periodontitis, and
the effect on bacterial cultures was examined differently from that in the current research.

From all presented studies, it is possible to conclude that laser activation of H2O2 has a
strong, positive and potentially clinically relevant antimicrobial effect, but the results cannot
be directly compared with the current study due to too many differences in the design
of the study (microorganisms tested, energy settings of the laser, different wavelengths,
different presentation of the obtained data, etc.). Additional research is needed to determine
the exact impact of 445 nm laser energy on H2O2 and most efficient laser energy settings,
leading to a safe and useful clinical decontamination protocol.

5. Conclusions

The conducted research provides a preliminary insight into the protocol for treating
the surface of dental implants with a combination of agents that have not been described
in the literature so far. Statistical analysis revealed a significant difference between all
three disinfection protocols compared to the negative control. However, in the mutual
comparison of the results of the three disinfection protocols, there were no statistically
significant results, although the laser-activated H2O2 group showed better antimicrobial
results compared to non-activated 3% H2O2. Within the inherent limitations of this study,
it is possible to conclude that all three disinfection protocols are equally powerful in the
treatment of S.aureus and C.albicans biofilms. For further evaluation of efficiency, new
research is needed on a larger number of implants, testing more energy settings, thermal
effects of the settings and, certainly, in-clinical, “in vivo” set-ups.
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