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����������
�������
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Abstract: Estimation of the epidemiology curve for the COVID-19 pandemic can be a very computa-
tionally challenging task. Thus far, there have been some implementations of artificial intelligence
(AI) methods applied to develop epidemiology curve for a specific country. However, most applied
AI methods generated models that are almost impossible to translate into a mathematical equation.
In this paper, the AI method called genetic programming (GP) algorithm is utilized to develop a sym-
bolic expression (mathematical equation) which can be used for the estimation of the epidemiology
curve for the entire U.S. with high accuracy. The GP algorithm is utilized on the publicly available
dataset that contains the number of confirmed, deceased and recovered patients for each U.S. state
to obtain the symbolic expression for the estimation of the number of the aforementioned patient
groups. The dataset consists of the latitude and longitude of the central location for each state and
the number of patients in each of the goal groups for each day in the period of 22 January 2020–3
December 2020. The obtained symbolic expressions for each state are summed up to obtain sym-
bolic expressions for estimation of each of the patient groups (confirmed, deceased and recovered).
These symbolic expressions are combined to obtain the symbolic expression for the estimation of
the epidemiology curve for the entire U.S. The obtained symbolic expressions for the estimation of
the number of confirmed, deceased and recovered patients for each state achieved R2 score in the
ranges 0.9406–0.9992, 0.9404–0.9998 and 0.9797–0.99955, respectively. These equations are summed
up to formulate symbolic expressions for the estimation of the number of confirmed, deceased and
recovered patients for the entire U.S. with achieved R2 score of 0.9992, 0.9997 and 0.9996, respectively.
Using these symbolic expressions, the equation for the estimation of the epidemiology curve for the
entire U.S. is formulated which achieved R2 score of 0.9933. Investigation showed that GP algorithm
can produce symbolic expressions for the estimation of the number of confirmed, recovered and
deceased patients as well as the epidemiology curve not only for the states but for the entire U.S.
with very high accuracy.

Keywords: artificial intelligence; COVID-19; epidemiology curve; genetic programming algorithm;
regression modeling

1. Introduction

According to 202 [1], the Coronavirus disease 2019 (COVID-19) is a respiratory and
vascular disease that is caused by the severe acute respiratory syndrome coronavirus 2
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(SARS-CoV-2). The outbreak of COVID-19 can be traced back to December 2019 in Wuhan
province (China), although Apolone et al. [2] stated that the virus may have been actively
spreading much earlier in Italy. The main transmission of COVID-19 from an infected
to an uninfected person is through coughing, sneezing, singing, talking or breathing.
The new infection [3,4] occurs when virus-containing particles (respiratory droplets or
aerosols) get into the mouth, nose or eyes of uninfected people who are in the vicinity of
the infected person.

The COVID-19 symptoms are variable, but generally include fever and cough [5–7]. How-
ever, people infected with COVID-19 may have different symptoms, and these symptoms
may change over time. ISome patients have a high fever, cough and fatigue while in
others have a low fever at the beginning and develop difficulty breathing weeks later.
The symptoms of COVID-19 [6,8] may be non-specific such as fever and dry cough. The
symptoms of COVID-19 can manifest 1–14 days after exposure to the virus [9]. The stan-
dard method for testing on COVID-19 is real-time reverse transcription-polymerase chain
reaction (rRT-PCR) [10,11]. The rRT-PCR test is typically done using respiratory samples
which are obtained using a nasopharyngeal swab. However, in some patients, a nasal swab
or sputum sample may also be used.

Since the outbreak began, researchers from various fields have been extensively
investigating this disease. Today, there are numerous research studies in which artificial
intelligence (AI) was applied for the development of an epidemiological model of COVID-
19. Most methods utilize machine learning (ML) algorithms on collected datasets. Most
research focused on the application of neural networks, either applying regression methods
on the datasets or analyzing the collected data in terms of time series, but other machine
learning methods have been applied as well.

Several machine learning approaches have been used to model COVID-19 spread.
One of the earliest papers [12] in this field is the utilization of Multi-Layer Perceptron (MLP)
on a publicly available dataset [13] to estimate the number of confirmed, deceased and
recovered patients on a global scale. In [14], the authors investigated the impact of COVID-
19 on the financial movement of Crude Oil price and three U.S. stock indexes: DJI, S&P
500 and NASDAQ Composite. In this investigation, the system consists of the stationary
wavelet transform (SWT) and bidirectional long short-term memory (BDLSTM) networks to
predict the commodity and stock prices. In [15], the authors developed a modified stacked
auto-encoder for modeling the transmission dynamics of COVID-19 epidemics in China.
The data for this investigation were collected from 11th January 2020 to 27th February 2020,
from WHO. Using this model, the authors performed forecasting of cumulative confirmed
patients of COVID-19 across China from 20th January 2020 to 20th April 2020. Using the
multiple-step forecasting, the estimated average errors of 6–10-day step forecasting were in
the range from 0.73% to 2.27%. The combination of multiple machine learning approaches,
including autoregressive integrated moving average (ARMA), cubist regression (CUBIST),
random forest (RF), ridge regression (RIDGE), support vector regression (SVR) and stacking-
ensemble learning, have been used [16] for the task of time series forecasting of one, three
and six days ahead in ten Brazilian states with a high daily incidence. The results show
that the models can generate accurate forecasting, achieving errors in a range of 0.87–3.51%,
1.02–5.62% and 0.95–6.90% for one, three, and six days ahead, respectively. The XGBoost
classifier has been used [17] on 485 blood samples from infected patients in the region of
Wuhan, China, to identify crucial predictive biomarkers of disease mortality. The utilized
method predicted the mortality of individual patients more than 10 days in advance with
an accuracy of 90%.

Deep Learning with LSTM network is used in [18] on the publicly available dataset
provided by John Hopkins University and the Canadian health authority to forecast the
COVID-19 outbreak in Canada. The results of the conducted investigation predict the
possible ending point of this outbreak around June 2020. The hybrid Wavelet-autoregressive
integrated moving average model and regression tree are used in [19] to forecast the number
of daily confirmed patients for Canada, France, India, South Korea and the UK.
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In this paper, the AI method, GP algorithm, is utilized, since this algorithm offers a
possibility of creating mathematical expression from the given data which provides the
best correlation between input and output data. Over the years, GP has been implemented
in various fields such as curve fitting, data modeling and symbolic regression [20–23];
image and signal processing [24–27]; financial trading, time series prediction and economic
modeling [28–31]; and industrial process control [32–35]. However, GP has also been
implemented in medicine-based tasks. In [36], the authors applied GP to oral cancer
prognosis. The dataset used in GP contained only 31 patients with feature selection of
smoking, drinking, tobacco chewing, histological differentiation of SCC and oncogene p63.
In this analysis, the authors achieved average scores of 83.87% accuracy and AUC score of
0.8341 for the classification task. In [37], the authors used GP and ANN to compare the
performance on six medical classification problems, and these are breast cancer (benign or
malignant), diabetes (positive or negative), gene (intron–exon, exon–intron or no boundary
in DNA sequence), heart (diameter of a heart vessel is reduced by more than 50% or
not), horse (horse with colic will die, survive or must be killed) and thyroid (thyroid
hyperfunction, hypofunction or normal function). The results show that GP performs
comparably to ANNs in classification problems. The authors of [38] developed prediction
models for confirmed patients (CC) and death patients (DC) across the three most affected
states Maharashtra, Gujarat and Delhi as well as the whole of India based on GP. The
results show that the proposed models are highly reliable for short time series prediction
of COVID-19 patients in India.

As seen from the literature overview, the implementation of AI is usually based
on ANN and the GP algorithm implementation is seen in traces. The benefit of the GP
algorithm over ANN is that after the training the symbolic expression is obtained, which
can be used and manipulated in further analysis. The ANN in general will provide a
trained architecture that is almost impossible to transform into mathematical expression
due to the large number of interconnected neurons.

The global trend of COVID-19 has been on the exponential rise, with more outbreaks
happening through time. This research focuses on the U.S. for two reasons. The first reason
is the quality and quantity of the data available, which are highly precise in comparison
to the data availability of other countries. As mentioned further in the paper, U.S. data
are collected at many levels and the high number of tests performed allows data to be
highly precise. This is true for the entire period of the data collection. The second reason is
the extremely high number of cases exhibited in the U.S., with both recovery and death
rates being relatively high, allowing for enough data to model these separate goals. After
research of COVID-19, investigation of the application of various AI methods in COVID-19
spread and the literature overview of the GP algorithm, the following questions arise:

• Is it possible to utilize a GP algorithm to obtain the symbolic expression for each
U.S. state based on latitude and longitude of the central location of that state and the
number of days since the outbreak began for the estimation of the number confirmed,
deceased and recovered patients with high accuracy?

• Based on the obtained symbolic expressions for the estimation of the number of con-
firmed, deceased and recovered patients for each U.S. state, is it possible to formulate
the symbolic expressions for the estimation of the number of confirmed, deceased and
recovered patients for the entire U.S. with high accuracy?

• Is it possible to utilize three symbolic expressions for the estimation of the number
confirmed, deceased and recovered patients for the entire U.S. to formulate sym-
bolic expression for estimation of the epidemiology curve for the entire U.S. with
high accuracy?

2. Materials and Methods

In this section, the publicly available dataset which was used in this paper is described.
Then, the GP algorithm used to obtain the symbolic expressions for confirmed, deceased
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and recovered patients of each U.S. state is described. Based on these symbolic expressions,
the methodology of determining the epidemiology curve for the entire U.S. is explained.

2.1. Dataset Description

As mentioned above, the publicly available dataset [13] was used to obtain symbolic
expressions for confirmed, deceased and recovered patients using the GP algorithm. This
dataset contains the number of confirmed, deceased and recovered patients for certain
locations, for each day since the COVID-19 outbreak started. The locations in this dataset are
defined with two parameters: latitude and longitude. Each state is defined with one location
in terms of latitude and longitude. In total, 50 states were considered in these analyses.
The federal district District of Columbia as well as inhabited territories such as American
Samoa, Guam, Northern Marian Islands, Puerto Rico and the U.S. Virgin Islands were
omitted from this investigation due to lack of data. In this study, the period used was from
22 January 2020 to 3 December 2020. The dataset is divided into three groups: confirmed,
deceased and recovered patients. The dataset for confirmed/deceased/recovered patients
for each state consists of the central location (latitude and longitude) of the state and the
number of patients for each day since the outbreak started. The geographical locations and
number of confirmed/deceased/recovered patients for each state are shown in Figure 1.

Figure 1. The number of confirmed, deceased and recovered patients in the U.S. on 3 December 2020.

As shown in Figure 1, the blue dots indicate latitude and longitude locations that were
used for each state as part of input data to obtain the symbolic expression for estimation
of confirmed/deceased/recovered patients. In Figure 1, it can be noticed that the highest
numbers of confirmed patients are in Texas, California and Florida followed by Illinois and
New York. In Figure 1, it can be noticed that the highest numbers of deceased patients are
in North Carolina, Utah, Colorado, Georgia and New Mexico. In Figure 1, it can also be
noticed that the highest numbers of recovered patients are in states that have the highest
number of confirmed patients, namely Texas, California and Florida.

As mentioned above, the publicly available dataset was used to obtain symbolic
expressions for confirmed, deceased and recovered patients using the GP algorithm. The
initial form of the dataset was in time-series form starting from 22 January 2020 to 3
December 2020. For each state, the central location of that state is given (latitude and
longitude) as well as the number of confirmed, deceased and recovered patients in the
above-mentioned period. It should be noted that, in this investigation, only U.S. states were
considered while the federal district (District of Columbia), as well as inhabited territories
(American Samoa, Guam, Northern Marian Islands, Puerto Rico and the U.S. Virgin Islands)
were omitted. The reason they were excluded is that only the states were considered and
that for previously mentioned territories the number of confirmed/deceased/recovered
patients is missing for some dates. The data for each state were transformed from the
time-series form into regression form. Thus, for the central location of each state, there are
only 317 instances used to train and test symbolic expression obtained by the GP algorithm.
Each of the 317 instances of the regression data consisted of three input variables, namely
latitude and longitude of the state central location and the day from which the outbreak
started, while the output variable was the number of confirmed/deceased/recovered
patents for a specific date. The last ten instances of the confirmed number of patients
dataset for the state of Alabama are shown in Table 1.
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Table 1. The last ten instances of the confirmed number of patients dataset for state of Alabama.

Instance Number Latitude Longitude Day Number of Confirmed Patients

308 32.318230 −86.902298 308 236,865
309 32.318230 −86.902298 309 239,318
310 32.318230 −86.902298 310 241,957
311 32.318230 −86.902298 311 242,874
312 32.318230 −86.902298 312 244,993
313 32.318230 −86.902298 313 247,229
314 32.318230 −86.902298 314 249,524
315 32.318230 −86.902298 315 252,900
316 32.318230 −86.902298 316 256,828
317 32.318230 −86.902298 317 260,359

As shown in Table 1, the latitude and longitude of the central location for Alabama
that represents the first two input variables are constant while the only changing input
variable is the number of days since the outbreak began. The output variable in this case
represents the number of confirmed patients for each day since the outbreak began. For
each state, these 317 instances were shuffled to prevent overtraining of the GP algorithm
and divided into training and testing datasets in the ratio of 80:20. The training dataset
consisted of 254 instances and was used in GP to obtain symbolic expression, while the
remaining 63 instances were used to test the symbolic expression and measure the R2

score. For each state, the data from the modified dataset was divided into training and
testing data in a ratio of 80:20. This means that 80% of the dataset or 254 instances were
used to obtain symbolic expression using the GP algorithm while the remaining 20% or 63
instances were used to test the obtained symbolic expression and calculate the R2 value. In
each GP execution, the entire dataset for the state was randomly shuffled and then divided
into training and testing datasets to prevent overfitting.

In the case of confirmed/deceased/recovered patients for each state, the data were
first randomly shuffled and then divided into a ratio of 80:20. This means that the 80%
dataset for confirmed/deceased/recovered patients of each state was used to obtain the
symbolic expression for the estimation of the number of confirmed/deceased/recovered
patients. The estimation accuracy in terms of the R2 score of the obtained symbolic
expression was then evaluated on 20% of the dataset and 80% of the training dataset for
each state. If the R2 number was below 0.99 in both the training and testing dataset, the
execution was repeated by shuffling the dataset and then dividing it in the same ratio. The
procedure was repeated 30 times, and, if the R2 score in both training and testing was
below 0.99, the GP algorithm was executed for another state (using the dataset for the next
state). After all symbolic expressions were obtained for the estimation of the number of
confirmed/deceased/recovered cases, the analysis of the obtained symbolic expressions
was performed. For those symbolic expressions that did not achieve the 0.99 R2 score, the
highest achievable R2 score was chosen. To put those percentages into better perspective, for
each state, there are 317 instances in terms of the number of confirmed/deceased/recovered
patients for each day since the outbreak began. As stated, 80% of the dataset for each state
was used for training, i.e. 254 instances, while the remaining 20% (63 instances) were used
to test the obtained symbolic expression or in other words to calculate the R2 score. By
doing such a rigorous procedure, overfitting was avoided.

The reason these input attributes were selected is that these values are not entirely
relevant to the spreading of COVID-19, but a question arises if these three input variables
(latitude, longitude and day) could be used to obtain the symbolic expressions for the
estimation of the number of confirmed/deceased/recovered patients for each state. The
other reason these variables were chosen was because these input values were already
provided in the dataset. The reason the authors chose the U.S. for this investigation is
that the number of confirmed/deceased/recovered patients is well documented for each
state. While the inclusion of other variables such as population density, climate, travel and
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migration would contribute to the process of obtaining symbolic expressions, we wanted to
investigate if it is possible to obtain symbolic expressions for the estimation of the number
of confirmed, deceased and recovered cases for each state using only latitude, longitude
and the number of days since the outbreak began.

2.2. Genetic Programming Algorithm

Genetic Programming (GP) algorithm can be described as the combination of ma-
chine learning (ML) methods and Evolutionary Algorithms (EA). As in the case of most
supervised ML models, the dataset must be divided into training and testing portions. The
training dataset is used in GP to obtain symbolic expression, which correlates input values
with the output. The testing dataset is used to test the obtained symbolic expressions. This
portion of the dataset is unseen by the symbolic expression and GP for that matter.

The benefit of utilizing the GP in comparison to other machine learning methods is the
shape of models generated by it, formulated as equations that transform the set of inputs
to the output goal. Because these equations utilize basic mathematical functions, they
can, after only minor modifications, be utilized in any software supporting them. This is
important in multi-discipline goals such as the one explored here because epidemiological
or medical staff may not have the equipment and software necessary to utilize the models
generated by a neural network. Even among the engineering staff, different versions of
libraries and unfamiliarity with the programming language used in the model creation
can cause issues during model interpretation. Simple, language-agnostic, mathematical
equations can easily be shared and implemented in new or existing software.

The GP algorithm starts the execution by creating the initial population which is
then propagated throughout the predefined number of generations. In each generation,
the population members compete to become parents of the next generation usually us-
ing tournament selection. After the selection of the best population members using the
aforementioned selection procedure, the genes between two or more population members
are exchanged using crossover operation, or genes of population members are randomly
selected and changed in mutation operation.

To obtain the best symbolic expressions for estimation of confirmed/deceased patients
for each state using GP algorithm, the input–output variables and GP parameters must be
defined. In the case of confirmed/deceased/recovered patients for each state, the input
and output variable representation is shown in Table 2.

Table 2. Input and output parameters defined and used in GP to obtain symbolic expression for estimation of number of
confirmed/deceased patients for each state and recovered patients for the entire U.S.

Parameters Confirmed Patients Analysis Deceased Patients Analysis Recovered Patients Analysis

Latitude X0 X0 X0
Longitude X1 X1 X1

Day X2 X2 X2
Number of patients per day yCon f irmed yDeceased yRecovered

As shown in Table 2 the input variables in GP algorithm for development of symbolic
expression for estimation of confirmed/deceased/recovered patients for each state are
latitude (X0), longitude (X1) and the day (X2) since the outbreak began. The output variable
in symbolic expression for estimation of confirmed/deceased/recovered patients is the
number of confirmed/deceased/recovered patients, respectively.

The initial set of solutions in the GP is named the initial population and is typically
randomly generated. It can either be generated using the full-size tree (up to the maximal
defined value), called a full method, or a grow method, which can stop before a maximal
size is reached. The combination of the two, called ramped half-and-half, was used in the
presented research. Nodes of the generated trees are randomly selected from the available
ones in the geneset.
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The continuity of the generated equations is guaranteed by the fact the GP uses
modified versions of certain mathematical operations. For example, in the case of a square
root

√
x, the operation is implemented as a square root of an absolute value (

√
|x|), to

avoid calculating square roots of negative values. Another common discontinuity is
division by zero. In the case of division by zero, or near-zero values, a protected division
is used, which returns the value of 1.0 [39–41]. These modified operations vary between
GP implementations and must be taken into account when the generated models are
implemented.

Fitness Function

After population initialization and in each generation, the population members must
be evaluated to determine how well they perform before performing the selection. This
task is achieved with fitness measure which is a primary mechanism for giving a high-level
statement of the problem’s requirements to the GP system.

The GP syntax trees are interpreted utilizing executing the nodes in the tree in a specific
order that guarantees that nodes are not executed before the value of their arguments is
known. This procedure is achieved by traversing the tree recursively starting from the root
node, and executing the evaluation of each node after the values of its children are known.
In this paper, the mean absolute error (MAE) is utilized as a fitness function for evaluation
of population members, which can be written in the following form:

MAE =
∑n

i=1 |yi − xi|
n

, (1)

where yi, xi and n represent the prediction, true value and number of instances, respectively.
After each GP algorithm execution, the symbolic expression is obtained on training portion
of the dataset. This symbolic expression is then evaluated on the testing portion of the
dataset with coefficient of determination (R2). The R2 metric of each symbolic expression
is calculated using the mathematical equation which can be written in the following form

R2 = 1− SRESIDUAL
STOTAL

= 1− ∑m
i=0(yi − ŷi)

2

∑m
i=0(yi − 1

m ∑m
i=0 yi)2

. (2)

The R2 metric compares two set of solutions, and these are the real data y and the data
obtained by the model ŷ. This means that the R2 metric calculates the amount of variance
contained inside the data y, which is explained by the data ŷ as a model output. The result
of R2 metric is in range from 0 to 1 where 1 indicates that there is no variance between
the real data and the data obtained by the model while 0 value indicates that none of the
variance in the real data is explained by the model.

The improvement of solutions is achieved using evolutionary computation operations:

• Crossover is taking two selected solutions and combining them into a new, children,
solution (influenced by the crossover coefficient).

• Mutation is randomly modifying an existing solution from the previous and copying
it to the current generation (influenced by the subtree, hoist and point mutation
coefficients).

• Reproduction is copying the solutions from the previous to the current generation
without modification (influenced by the maximal sample’s coefficient).

The solutions to be used in the above operations are determined using tournament
selection, which is a fitness proportional selection. The process of selection and modification
using EC operations is performed until the termination criteria are reached, termination
criteria being either the selected number of generations being reached or the fitness value
falling below a pre-specified threshold. The final hyperparameter of the GP which needs to
be described is the parsimony coefficient. The tendency exists for the solutions to grow
through the generations. Sometimes, this results in a better solution, but, in other cases,
the growth generates larger equations without significant gains in the fitness function.
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The larger solutions are of higher computational complexity, slowing both the training
process and the later use of the generated models. To combat this, the fitness function of
the solutions may be lowered depending on their size. The amount of this is modified with
the parsimony coefficient, the larger value of which penalizes the large solutions more.

The utilized values of hyperparameters are given in Table 3. The hyperparameters
are randomly selected from the given ranges and training is performed. In the case the
desired R2 value is not reached once the GP training is complete, new hyperparameters are
randomly selected and the process is repeated. In addition to hyperparameter values, GP
uses a function set of mathematical functions to insert into symbolic expressions: addition,
subtraction, multiplication, division, square root, maximum and minimum of values,
absolute value and natural logarithm.

Table 3. The list of GP parameters used to obtain symbolic expressions for the estimation of the number of confirmed
patients for each state.

Parameter
Confirmed Deceased Recovered

Lower Bound Upper Bound Lower Bound Upper Bound Lower Bound Upper Bound

Population Size 200 1000 1000 2000 1000 2000
Number of generations 100 200 100 200 100 200

Tournament Size 20 100 100 200 100 200
Tree Depth 3–6 7–12 3–6 7–12 3–6 7–12

Crossover coefficient 0.9 1 0.9 1 0.9 1
Subtree mutation coefficient 0.001 0.1 0.001 0.1 0.001 0.1
Hoist mutation coefficient 0.001 0.1 0.001 0.1 0.001 0.1
Point mutation coefficient 0.001 0.1 0.001 0.1 0.001 0.1

Stopping criteria 0.001 1 0.001 1 0.001 1
Maximum number of samples 0.9 1 0.9 1 0.9 1

Constant range −100,000 100,000 −100,000 100,000 −100,000 100,000
Parsimony coefficient 0.1 2 0.01 0.2 0.1 2

As the table shows, not all of the goals utilize the same ranges. Initial hyperparameter
ranges for all goals were equal. During the research, certain hyperparameter values
for certain goals were increased to obtain higher quality solutions, in the case that the
smaller range did not provide the necessary performance. Initially, smaller ranges were
preferred, due to shorter training times, but were increased if the models did not achieve
the required error.

In this investigation the computer hardware used consisted of CPU Intel Core I5-
4570 with a base clock of 3.20 GHz, 8 Gb of DDR3 RAM. The time required to obtain the
symbolic expression for the estimation of the number of confirmed/deceased/recovered
patients for each state was approximately 4/3/5 min, respectively. If in each GP algo-
rithm execution, the obtained symbolic expression for the estimation of the number of
confirmed/deceased/recovered patients achieved a high R2 score, then the total number of
GP algorithm executions would be 150, i.e., 150 symbolic expressions. The total (ideal) time
to obtain these symbolic expressions would be 600 min (10 h). However, this is not the case
since for some symbolic expressions for the estimation of the number of confirmed/de-
ceased/recovered patients there were more than 10 GP algorithm executions required to
obtain symbolic expressions with high accuracy. Thus, the approximate time to obtain
all 150 symbolic expressions (for each state, three symbolic expressions for estimation of
confirmed, deceased and recovered patients) took approximately two working days.

2.3. Epidemiology Curve

To define the epidemiology curve for a specific area first the symbolic expressions for
the estimated number of confirmed, deceased and recovered patients must be obtained
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first. After the aforementioned symbolic expressions are obtained, the epidemiology curve
can be calculated using the following expression:

y = ycon f irmed − ydeceased − yrecovered, (3)

where ycon f irmed represents the total estimated number of confirmed patients, ydeceased
represents the total estimated number of deceased patients and yrecovered represents the
total estimated number of recovered patients. Thus, the estimated epidemiology trend
for a specific country can be calculated as the difference among confirmed, deceased
and recovered patients. In this case, the total estimated number of confirmed patients is
calculated as the sum of all symbolic expressions obtained for 50 U.S. states and is written
in the following form:

ycon f irmed =
N

∑
n=1

yCi, i = 1, . . . , 50, (4)

where yCi represents the estimated number of confirmed patients for each state. The total
estimated number of deceased patients for the entire U.S. is obtained in the same way
using the following expression:

ydeceased =
N

∑
n=1

yDi, i = 1, . . . , 50, (5)

where yDi represents the estimated number of deceased patients for each states which is
obtained using symbolic expression for the specific state. The same procedure is used to
obtain total estimated number of recovered patients in the entire U.S. using the following
mathematical expression:

yrecovered =
N

∑
n=1

yRi, i = 1, . . . , 50, (6)

where yRi represents the estimated number of recovered patients for state i.

3. Results and Discussion

In this section, the results are presented and discussed. First, the symbolic expressions
for the numbers of confirmed, deceased and recovered patients are presented, followed by
the symbolic expression for the estimation of the epidemiology curve for the entire U.S.

3.1. Symbolic Expression for Estimation of the Number of Confirmed Patients for Each State and
the Entire U.S.

The procedure of obtaining the symbolic expression of estimation of confirmed pa-
tients for each state was performed on the dataset [13], which was split into training and
testing portions in ratio 80:20. This means that 80% of the dataset was used for training
or in other words for obtaining the symbolic expressions, while 20% of the dataset was
to obtain the R2 score using Equation (2). In each iteration of the GP algorithm, the GP
parameters were randomly selected from the pre-specified range given in Table 3. The ma-
jority of obtained symbolic expressions used for estimation of confirmed patients for each
state are too large to be presented in this paper. Instead, examples of obtained symbolic
expressions are shown for the estimation of confirmed patients for Maryland and Virginia,
which achieved accuracy on the testing dataset of 0.99334 and 0.9915, respectively.

yCon f Maryland =X0X2

√
|X2| −min(X0X2

√
|X2|, |X1|(−min(X2

2 − 14547.7, X2|X1|,

|X1|2, (X2
2 − 14547.7) log(X2|X2| − 14547.7)) + X2|X2| − 14547.7)

1
2 ) (7)
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yCon f Virginia =X2 max((X2 −
X1

X0
)max(−59018.9, 0.000021 max(1, X0)√√

X2 −min(X0, X2)max(
66744.2

X0
,

X1

X0
, X2)), min(X0,−X1

X0
+ X1 + X2))

(
X2 −min(X2, max(

√√√√X2 −max(X2,

√
min(−59018.9,

X1

X0
, X2,

√
min(X0, X2))), (8)

min(max(
X1

X0
,

X1

(X2 − X0 log(X2))max(0.000042X0, X2
X1

)
),

√
X2 −max(X2,

√
min(−59018.9, X2)) + X0)))

) 1
2

These two symbolic expressions of confirmed patients for Maryland and Virginia were
chosen due to the simplicity of symbolic expressions. In these equations, X0 represents
latitude, X1 represents longitude and X2 is the days elapsed since the start of the dataset.
The GP parameters used for obtaining the symbolic expressions of confirmed patients for
each state is given in Table A1. The table of results is given in Appendix A (Table A1).

As shown in Table A1, the population tended towards the lower values in the range,
with most of the solutions using population sizes smaller than 1000 in all cases. Most
solutions used the number of generations higher than 150, up to a maximum of 194/200.
For the tree depth, the values for all states models were around the middle of the available
range. Crossover coefficient tended towards the lower side of the range, with some of the
solutions even using the 0.9 minimum available value, the same being true for all mutation
coefficients. Constant ranges are large, indicating the lack of information contained within
the dataset inputs. Parsimony coefficients tend towards the higher side of the available
range, indicating that the models ran into bloating issues that needed to be curbed. All
R2 scores achieved are above 0.9, the lowest being 0.94 for Vermont. The distribution of
achieved results for each symbolic expression in terms of R2 score for each state is shown
in Figure 2a.

As shown in Figure 2a, the obtained symbolic expressions for estimation of confirmed
patients for each state have very high accuracy. The highest accuracy (higher than 0.999)
was achieved with the symbolic expressions for New York, North Dakota Oregon, South
Carolina, Virginia, West Virginia and Wisconsin. To compare the accuracy of obtained
symbolic expression for confirmed patients with the real data all symbolic expressions for
estimation of confirmed patients for each state are summed up using Equation (4). The
accuracy of summed symbolic expression for the estimation of confirmed patients for the
entire U.S. is calculated using Equation (2). In Figure 2b, the summed symbolic expression
for estimation of confirmed patients is compared to the real data for the entire U.S.
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(a)
(b)

Figure 2. The obtained results for deceased patients: (a) the accuracy of obtained symbolic expressions used for estimation of number
of confirmed patients for each state achieved on the testing dataset in terms of R2 score; and (b) the comparison of estimated and
actual numbers of confirmed patients through time.

As indicated in Figure 2b, the accuracy of symbolic expression for the estimation of
the number of confirmed patients achieved the R2 score of 0.9992. This score is graphically
validated in comparison to the real data. The increase in the number of confirmed cases
in the observed period can be best described throughout political and social events that
have occurred in the aforementioned period. In Figure 2b, it can be noticed that in the
first 60 days since the outbreak started there is almost negligible growth in the number
of confirmed patients when compared to the interval from 60 to 317 days. According to
MD [42], the virus had been circulating undetected at least since January 2020, and possibly
as early as November 2019. The first reported case of COVID-19 in the U.S. was reported
on 21 January 2020. From 21 January to 23 February 2020, 14 cases of COVID-19 were
reported in six states. However, the outbreak appeared contained through February 2020,
although the CDC warned the American public for the first time on 25 February 2020
(35th day since the outbreak began) to prepare for a local outbreak [43]. In the last week
of February, several large events contributed to the further spreading of COVID-19 in
Louisiana, Massachusetts and Georgia [43]. On 12 March 2020, the number of confirmed
cases in the U.S. exceeded 1000 [44]. According to Liptak [45], the White House on 16
March advised the general population to avoid gatherings of more than 10 people, and on
19 March the State Department [46] advised U.S. citizens to avoid all international travel.
According to Khazan [47], by the middle of March, all 50 states were able to perform tests
with a doctor’s approval but the number of available test kits remained limited, which
means that the true number of people infected was much higher than reported. In this
period, federal and state agencies began taking urgent steps to prepare for a surge of
hospital patients, establishing additional places for patients in the case hospitals became
overwhelmed and the manpower from the military and volunteer armies were called
up to help construct the emergency facilities. Although the government in this period
responded by preventing rallies and providing testing facilities and hospital capacities
for a growing number of confirmed patients, the general population began to protest
against government-imposed lockdowns. The first protest was in Michigan on 15 April
2020 (85th day since the outbreak began) where an estimated 3000 people took part in the
protest [48]. Following the protest in Michigan, anti-lockdown protests were held in every
state where protesters were in the range from 100 s to 1000 s. Additionally, there were
450 major protests (Black Live Matters) which were held in cities and towns across the
U.S. due to racially charged events [49]. These protests that occurred in a period between
90 and 150 days since the outbreak began certainly had a major influence on the rapid
virus spread as well as the growth in the number of confirmed patients. In the period
between 100 and 250 days since the outbreak in the U.S. started, more than 150 health
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professionals sent a letter to the federal government in which they requested a lockdown
of 6–8 weeks. They believed that this would restore the country by 1 October 2020 [50–52].
If the government enabled the lockdown, this could prevent rapid growth of the number
of confirmed patients; however, the government’s negligence to the multiple demands
of health professionals also contributed to the rapid spread of the virus. The additional
contributing factor to the rapid spread of the virus is the motorcycle rally in South Dakota,
which more than 400,000 people attended [53]. The massive gathering resulted in more
than 300 confirmed patients from 20 states [53,54]. In the last period, from 250 to 317
days since the outbreak began, the presidential elections campaign contributed to the
additional spreading of the virus. It is reported that the aftermath of presidential elections
campaigning increased the number of confirmed patients by 35% [55]. At the end of
the investigated period, all previously mentioned political and social events had some
influence on the virus spread, which resulted in more than 14,000,000 confirmed patients
by 317 days since the outbreak began.

3.2. Symbolic Expression for Estimation of the Number of Deceased Patients for Each State and the
Entire U.S.

The procedure for obtaining a symbolic expression for the estimation of deceased
patients for each state is the same as for the symbolic expressions obtained for the estimation
of confirmed patients for each state. Most of the obtained expressions are too large to be
presented in this paper. Instead, the examples of the two smallest symbolic expressions are
shown for the estimation of the number of deceased patients for Hawaii and Idaho, which
achieved accuracy on a testing dataset of 0.9905 and 0.9906, respectively.

ydeceasedHawaii =max(−X0 + 2X2 − 354.196,√
log(

√
X2 − X0)(−(X2 − 2X0) log(

√
X2 − X0)− X0 + X2)). (9)

ydeceasedIdaho =
0.0000132271X1X2

2

(
2X2 − X0X1

X2

)
min

(
X1
X0

, X2
X1

)
X0
√

X0
. (10)

Equations (9) and (10) represent two symbolic expressions for the estimation of the
number of deceased patients for Hawaii and Idaho. X0 and X1 represent latitude and
longitude of the central location of each state, respectively. X2 represents a specific day
calculated from the date at which the COVID-19 outbreak started (22 January 2020). In
Table A2, the GP parameters used to obtain the best symbolic expression of deceased
patients for each state are given with the achieved R2 accuracy. Individual results are given
in Table A2.

As was the case previously, the population ranges tended towards the higher possible
value, but there are selected values all across the range. Many models converged with
the number of generations near the lower end of available values. Most solutions used
the higher end of the available values for the number of tournament entries. Many initial
tree size values tended towards having six as the lower bound. Similar to the previously
observed case, the values for crossover and mutation probabilities tend towards the lower
possible range. The value of the maximum number of samples is shown to have been
selected across the entirety of the range. The range of constant used is also large for the
best-selected solutions. Parsimony coefficient values tend to be around the middle of the
range for most cases. The achieved R2 score values of obtained symbolic expression for
deceased patients estimation for 50 states are in a range between 0.9404 and 0.9998. The
lowest R2 score value was achieved in the case of Washington while the largest R2 score
value was achieved in the case of Florida.

The achieved R2 score for each state is shown in Figure 3a.
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(a)
(b)

Figure 3. The obtained results for deceased patients: (a) the accuracy of obtained symbolic expressions used for estimation of number
of deceased patients for each state achieved on the testing dataset in terms of R2 score; and (b) the comparison of estimated and actual
numbers of deceased patients through time.

As shown in Figure 3a, all symbolic expressions for estimation of deceased patients
obtained for each state are estimating the number of deceased patients with high accuracy.
The symbolic expressions that achieved accuracy higher than 0.999 are for Arkansas,
California, Florida, Illinois and Missouri. To compare the accuracy of obtained symbolic
expressions for deceased patients with the real data, all symbolic expressions for each state
are summed up using Equation (5). The accuracy of the summed symbolic expression
for estimation of deceased patients for the entire U.S. is calculated using Equation (2). In
Figure 3b, the summed symbolic expression for deceased patients estimation is compared
to the real data for the entire U.S.

As shown in Figure 3b, the summed symbolic expression for the estimation of the
number of deceased patients for the entire U.S. estimates the number of deceased patients
with high accuracy when compared to the real data (data from the dataset). The achieved
R2 accuracy of symbolic expression for the estimation of the number of deceased patients
for the entire U.S. is equal to 0.9997.

As shown in Figure 3b, the number of deceased patients in the first 50 days since
the outbreak began is very small. The first recorded deceased patient in the U.S. was in
California on 2 February on 2020 [56]. On 11 April 2020, the number of deceased patients
in the U.S. became the highest in the world with the number of deceased patients reaching
20,000 [57]. The anti-lockdown and Black Lives Matter protests which occurred between
April and July in various states had a huge contribution to the increase of confirmed
and deceased patients. By 27 May, 100,000 patients had died from COVID-19 [58]. On
22 September, the number of deceased patients passed 200,000 [59]. The presidential
election campaign also had some influence on the number of deceased patients since the
number surpassed the value of 250,000. According to Woolf et al. [59], COVID-19 has
become deadlier than heart disease and cancer. The mortality rates from COVID-19 poses
the threat to different age groups. The investigation showed that COVID-19 had become
the third leading cause of death for patients aged 45–84 years and the second leading cause
of death for those aged 85 years or older. For example, between 1 October (254th day) and
3 December (317th day) the number of COVID-19 deaths tripled, from 826 to 2430 deceased
per day. However, it should be mentioned that, on 21 April (91st day), at the height of the
spring surge, the number of COVID-19 deaths was 2856. The record-breaking number of
deceased patients, which is indicated in the last 63 days in Figure 3b, indicates that lethality
may increase further as transmission increases with holiday travel and gatherings.
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3.3. Symbolic Expression for Estimation of the Number of Recovered Patients for Each State and
the Entire U.S.

The procedure of obtaining symbolic expressions for the estimation of the number of
recovered patients for each state is the same as the procedure used to obtain the symbolic
expression for the estimation of the number of the confirmed and deceased patients for
each state. Most of the symbolic expressions used to estimate the number of recovered
patients for a particular state are too large to be presented in this article. Instead, two
simple symbolic expressions are given, which are obtained for estimation of the numbers
of the recovered patients for Washington and Wyoming that achieved accuracies on the
testing dataset of 0.9929 and 0.9966, respectively.

yRecoveredWashington = −
0.0000508903X1X2

2 log(|X1|)min(X2, X2 − X0)

min(

√
X3/2

2
X0

, X2 − X0)

. (11)

yRecoveredWyoming =

X2

(
X2
√
|X1|

log(X2)|
2X2−X1

|
√
|X2−X1 |−X0 |

−X0|
+ X2

)
| 2X2

|
√
|X2−X1|−X0|

− X0|
. (12)

As above, in Equations (11) and (12), X0 and X1 are the latitude and longitude of
central state locations, respectively, while X2 is the day since the COVID-19 outbreak
started (22 January 2020). In Table A3, the symbolic expression for the entire U.S. is given
with GP parameters used to obtain the symbolic expression, symbolic expression, and the
R2 accuracy. In Table A3, the GP parameters used to obtain the best symbolic expression
for the estimation of the number of recovered patients for each state is given with the
achieved R2 score. As in previous cases, individual results may be found in the Appendix
(Table A3).

The GP parameters shown in Table A3 used to obtain the symbolic expression for
estimation of recovered patients in each state were randomly selected from the pre-specified
ranges shown in Table A3.

Most solution populations were close to the middle of the available range. The same
is true for the selected number of generations, while the tournament size tended towards
the higher end of the available range. It can be noticed that the values of the operation
coefficients, as in the previously observed cases, tend towards the lower end of the range.
A number of the selected maximal samples tended towards the higher end of the range.
The values of parsimony coefficients were equally distributed across the range. Values of
constant ranges are large as they were in both initial cases.

As shown in Table A3, all symbolic expressions obtained for estimation of recovered
patients for each state achieved very high accuracy, which was measured in terms of R2

score. The R2 score is in a range from 0.9797 to 0.99955. The lowest accuracy value achieved
was in the case of Vermont, while the highest accuracy value was achieved in the case of
Minnesota. In Figure 4a, the R2 accuracy is shown on U.S. map.

As shown in Figure 4a and Table A3, it can be noticed that all symbolic expressions
achieved very high accuracies. The symbolic expressions obtained for estimation of the
number of the recovered patients that achieved R2 accuracies higher than 0.999 are those
symbolic expressions obtained for Idaho, Minnesota, Ohio, Tennessee and Texas. To
compare the estimation of recovered patients for the entire U.S. with the real data, the
symbolic expression of the entire U.S. was obtained as the sum of 50 symbolic expressions
(each symbolic expression for one state) using Equation (6). The results obtained with
the symbolic expression for the entire U.S. and the real data are used in Equation (2) to
obtain the R2 value to measure the accuracy of the symbolic expression for estimation of
the number of recovered patients for the entire U.S. In Figure 4b, the comparison of the
estimated number of recovered patients achieved with the obtained symbolic expression
for the entire U.S. with the real data is shown.
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(a)
(b)

Figure 4. The obtained results for deceased patients:(a) the accuracy of obtained symbolic expressions used for estimation of number
of recovered patients for each state achieved on the testing dataset in terms of R2 score; and (b) the comparison of estimated and actual
numbers of recovered patients through time.

As shown in Figure 4b, the number of recovered patients in the entire U.S. is expo-
nentially growing. In the first 100 days since the outbreak began (22 January 2020), the
number of recovered patients was very small when compared to the remaining 217 days.
After 200 days, the number of recovered patients reached almost 2,500,000. It is interesting
to notice that, in the last 20 days, the number of recovered patients is growing much
faster than ever before, since the number of recovered patients in that 20 days is almost
1,000,000. The symbolic expression for the estimation of recovered patients for the entire
U.S. estimates the number of recovered patients with high accuracy when compared to
the real data (data from the dataset). Another indicator of how accurate is the symbolic
expression is the R2 value of 0.9996 calculated using Equation (2).

At the beginning of the virus outbreak in the U.S., the first 80 days the number of
recovered patients has a similar trend as the number of confirmed and deceased patients. As
the number of confirmed patients increased due to various large gatherings such as protests
and other manifestations, the number of recovered patients also increased. However, it
should be mentioned that recovery from the disease was different for different age groups.
Woolf et al. [59] shown that the mortality rate is higher for age groups above 35 and that,
ofr the age group higher than 85, the death of virus in the U.S. is the second cause of death.
Younger age groups are more likely to recover from the disease than the older ones.

Symbolic Expression for Estimation of Epidemiology Curve for the Entire U.S.

At this point, all the required components for defining symbolic expression for epi-
demiology curve estimation are defined. The symbolic expression for the estimation of
the number of confirmed patients for the entire U.S. is defined with the summation of 50
symbolic expressions. Each symbolic expression is the expression for the estimation of
the number of confirmed patients for a specific U.S. state. The same procedure is applied
to obtain the symbolic expression for the estimation of the number of deceased patients
for the entire U.S. With these three equations, the epidemiology curve for the entire U.S.
can be calculated using Equation (3). The obtained symbolic expression for epidemiology
curve estimation is used with the real data to calculate the accuracy of the aforementioned
symbolic expression in terms of R2 metric using Equation (2). The achieved R2 value
of the symbolic expression for estimation of the epidemiology curve is equal to 0.9933.
In Figure 5, the estimated epidemiology curve is compared with the real data.

As shown in Figure 5, the general trend of infected (active) patients is still rising.
For the first 250 days since the outbreak began (22 January 2020), the number of infected
patients is slowly rising. Unfortunately, in the last 80 days, the number of infected patients
is rapidly increasing, which means that the number of confirmed patients is growing
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much faster than the number of recovered patients. The obtained symbolic expression
for estimation of the epidemiology curve follows the trend of the real data with smaller
deviations. The most noticeable deviation from real data can be seen in the last 20 days
where the estimated number of infected patients is smaller than those obtained from the
real data.

Figure 5. The comparison of estimated actual patients in the U.S. with the real data from the dataset.

3.4. Sensitivity Analysis

The variance-based sensitivity analysis method [60] (Sobol indices) was used to esti-
mate the effects of each model input parameter (latitude, longitude and number of days
since the outbreak began) on output parameter (number of confirmed/deceased/recovered
patients for the entire U.S.). This method was used to calculate the first-order, second-
order and total-effect using Python package SALib [61]. The first-order indices indicate
the amount of variance in the output that can be attributed to varying each parameter
individually. For the first-order indices, since there is no interaction between parameters,
the sum is equal to 1. The total-effect indices represent a measure of total variance for given
parameter including the interaction effects and as the result have a sum greater than 1. If
the total-effect indices are substantially larger than the first-order indices, then there are
likely higher-order interactions occurring. The second-order indices represent measure
of variance caused by variation of two parameters. The Saltelli’s cross sampling method
was utilized to perform uniform distributions for each variable which resulted in 80,000
parameters. After each estimation of confirmed/deceased/recovered cases for the entire
U.S., the values obtained using sensitivity analysis are given in Tables 4–6.

As shown in Table 4, the latitude (X0) and the number of days parameter since
the outbreak began (X2) parameter exhibit the first-order sensitivities but the longitude
(X1) parameter has very small first-order sensitivity. The total-effect indices for all three
parameters are substantially higher than those values obtained for first-order indices
which indicates that higher order interactions occur. The second-order indices indicate the
strongest interaction between latitude (X0) and number of days (X2) exists, which is equal
to 0.384535.
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Table 4. First-order and total-effect Sobol indices measuring model sensitivity to parameters in
symbolic expression for the estimation of the number of confirmed cases for the entire U.S. (X0

latitude, X1 longitude and X2 day).

Variable Distribution
Sobol Indices

First-Order Total-Effect

X0 19.74176, 66.16051 0.592586 1.036779
X1 −155.844, −69.9722 0.00047 0.00417
X2 (0, 317) 0.367189 1.15179916

Table 5 shows that, as in the case of the number of confirmed patients, the sensitivity
analysis showed that the latitude (X0) and the number of days since the outbreak began
exhibit the first-order sensitivities, while the first-order sensitivity for longitude (X1) is min-
imal. Higher-order sensitivities do not occur as the total-effect values are not substantially
higher than the first-order indices.

Table 5. First-order and total-effect Sobol indices measuring model sensitivity to parameters in
symbolic expression for the estimation of the number of deceased cases for the entire U.S. (X0

latitude, X1 longitude and X2 day).

Variable Distribution
Sobol Indices

First-Order Total-Effect

X0 19.74176, 66.16051 0.10282 0.124253
X1 −155.844, −69.9722 0.002036 0.0127
X2 (0, 317) 0.87679 0.99746

From the performed sensitivity analysis, it can be noticed that first-order indices occur
for number of days parameter (X2) while the other two are very small. However, in this
case, the first-order index for longitude (X1) is much higher than latitude (X0). The total
effect indices values are not substantially higher than the first-order values so there are no
higher-order interactions occurring, as shown in Table 6.

Table 6. First-order and total-effect Sobol indices measuring model sensitivity to parameters in
symbolic expression for the estimation of the number of recovered cases for the entire U.S.

Variable Distribution
Sobol Indices

First-Order Total-Effect

X0 19.74176, 66.16051 0.13976 0.010748
X1 −155.844, −69.9722 0.016542 0.13089
X2 (0, 317) 0.836388 0.986203

3.5. Discussion

From the conducted investigation, it can be noticed that each symbolic expression
obtained for each U.S. state is estimating the number of confirmed patients in each state
with high accuracy. As shown in Figure 1a and Table A1, the value of achieved R2 score is
in range from 0.9406 to 0.9992. From these values, it can be concluded that all symbolic
expressions are estimating the number of confirmed patients for each state with very
high accuracy. To obtain the symbolic expression which was used for the estimation of
the number of confirmed patients for the entire U.S., all 50 symbolic expressions for the
estimation of the number of confirmed patients for each state were summed up using
Equation (4). This symbolic expression achieved high accuracy of 0.9987 in the estimation
of the number of confirmed patients for the entire U.S, and the comparison with the real
data is shown in Figure 1b. Initially, the number of confirmed patients in the U.S. for the
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first 60 days since the outbreak started was negligible. However, the initial government
response to inform the general public was made in mid-March of 2020, although mass
gatherings in the first 60 days did occur and CDC informed the general public at the end
of February of a potential local outbreak. During Days 60–250, the number of confirmed
patients grew from 0 to above 7,000,000. In this period, the general public protests in almost
every state for anti-lockdown measures and Black Lives Matter were the most contributing
factors for increased virus spreading at that time. In the last period of Days 250–317, the
number of confirmed patients in the U.S. grew extremely from 7,000,000 to 14,000,000. The
most contributing factor s for virus spread at that time were presidential rallies and mass
gatherings in South Dakota. The symbolic expression obtained to estimate the number
of the confirmed patients for the entire U.S., which was obtained as the summation of
symbolic expressions for the estimation of the number of confirmed patients for each state,
follows the real data with smaller deviations in the ranges 120–170 and 300–317 days. The
first interval can be divided into sub-intervals where in the first (120–150 days) the symbolic
expressions are underestimated the number of confirmed patients, while in the second
subinterval (150–170 days) the symbolic expression overestimated the number of confirmed
patients. In the second interval (300–317 days), the symbolic expressions underestimated
the number of confirmed patients.

The same procedure was adopted for the estimation of the number of deceased and
recovered patients. First, the symbolic expressions for the estimation of the number of
deceased and recovered patients for each state were obtained, and then all 50 equations
were summed up to obtain symbolic expressions for estimation the number of deceased or
recovered patients. As shown in Figure 2a and Table A2, the value of achieved R2 score
with symbolic expressions for the estimation of the number of deceased patients for each
state range from 0.9404 to 0.99984. The obtained symbolic expressions for the estimation
of the number of deceased patients for each state were used in Equation (5) to obtain the
symbolic expression for the estimation of the number of deceased patients for the entire
U.S., which achieved an accuracy of 0.9997. As shown in Figure 2b the curve of deceased
patients has a similar trend as the number of confirmed patients curve. In the first 60 days
since the outbreak, the number of deceased patients is extremely small. In the interval from
60 to 150 days since the outbreak began, the number of deceased patients rapidly increase
to almost 125,000. This increase in the number of deceased patients can be attributed to the
protests that occurred in this period, which contributed to the virus spreading as well as
the high mortality rate in the age groups higher than 35 years, according to Woolf et al. [59].
After 150 days, the number of deceased patients has an almost linear trend and the number
of deceased patients after 300 days since the outbreak began is near 250,000. In the interval
between 300 and 317 days since the outbreak began, the number of deceased patients has
again rapid growth. As in the case of the number of confirmed patients, the presidential
election campaign did have some influence on spreading the virus among those who
attended these gatherings. The symbolic expression obtained for the estimation of the
number of deceased patients follows the trend of the real data with small oscillations in
the interval between 60 and 100 days. In the interval between 300 and 317 days since the
outbreak began, the symbolic expression underestimated the number of deceased patients
by 3%. From this comparison and the achieved R2 score in estimation of the number of
deceased patients for the entire U.S., it can be concluded that the symbolic expression
estimates the number of deceased patients with high accuracy.

The R2 score achieved with symbolic expressions for the estimation of the number
of recovered patients for each state, as shown in Figure 3a and Table A3, was in range
from 0.9797 to 0.99955. The symbolic expressions for the estimation of the number of
recovered patients for each state were summed up using Equation (6) to obtain the symbolic
expression for the estimation of the number of recovered patients for the entire U.S.,
and this symbolic expression achieved an accuracy of 0.9996. As shown in Figure 3b, it
can be noticed that, for the first 60 days since the outbreak began, there were very few
recovered patients. After 60 days, the number of recovered patients almost exponentially
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increased, reaching 810,000 recovered patients after 317 days. The symbolic expression for
the estimation of the number of recovered patients very accurately follows the number of
recovered patients when compared to the real data. The only deviation from the real data
in the case of the number of confirmed and deceased patients can be noticed at the end
where the symbolic expression slightly underestimated the number of recovered patients.
The number of recovered patients, in general, is high when compared to the number of
deceased patients. However, this number could be higher if the government at the time the
outbreak in the U.S. started enforced rigorous restrictions which were already advised by
CDC and healthcare professions several times in the investigated period.

The symbolic expressions for the estimation of the number of confirmed, deceased
and recovered patients are obtained were all used to obtain the symbolic expression for
the estimation of epidemiology curve. From the obtained solution, which is graphically
represented in Figure 5, after 30 days since the outbreak began, there is a small increase
in the number of infected (actual) patients. From 30 to 130 days since the outbreak began,
there is an increase in the number of infected patients to almost 110,000. In the range from
150 to 250 days since the outbreak began, there is an increase in the number of infected
patients to approximately 250,000. After 250 days, the number of infected patients had
a huge increase, which means that the number of confirmed patients rapidly increased
with a smaller increase in the number of deceased and recovered patients. The symbolic
expression for the estimation of the number of infected patients, when compared to the
real data, follows the trend of infected patients with smaller oscillations in the range from
100 to 150 days, where symbolic expression slightly underestimated the number of infected
patients. In the range from 150 to 180 days, the symbolic expression overestimated the
number of infected patients. In the range from 180 to 300 days, there are some small
oscillations in the estimation of the number of infected patients. The most noticeable
difference in the estimation of the number of infected patients is noticed in the range from
300 to 317 days since the outbreak began, where symbolic expression underestimated the
number of infected patients. This underestimation of the number of infected patients arises
from an underestimation of symbolic expressions obtained for the estimation of the number
of confirmed, deceased and recovered patients.

Based on the conducted investigation, it can be noticed that the latitude and longitude
of the central location, and the number of days since the outbreak began can be used
as the input variables to obtain symbolic expressions for the estimation of the number
of confirmed, deceased and recovered patients for each state. However, it should be
mentioned that lower accuracies achieved with symbolic expressions for the estimation
of the number of confirmed, deceased and recovered patients will have some influence
when they are summed up to estimate the number of confirmed, deceased and recovered
patients for the entire U.S. and finally the epidemiology curve. The underestimations made
by symbolic expressions for confirmed, deceased and recovered patients in the interval
from 300 to 317 days are noticed when the estimated epidemiology curve is compared with
the epidemiology curve obtained from the real data.

The failure of the general public and the government officials to take necessary steps
to prevent viral transmission made the entire U.S. vulnerable. The lack of necessary steps
allowed COVID-19 to become one of the leading causes of death for those aged 35 years or
older. The development and implementation of the vaccine offer some prospects, but this
solution will not come soon enough to avoid an increased number of COVID-19-related
hospitalizations and death.

From the performed sensitivity analysis on symbolic expression for the estimation of
the number of confirmed cases for the entire U.S., it can be concluded that latitude (X0) and
the number of days since the outbreak began (X2) have high variances, contributing to the
model variance, while the longitude (X1) accounts for only 0.047% of the model variation.
The second-order variation confirms that the latitude and the number of days since the
outbreak began together have high contribution to the model variance. The sensitivity
analysis performed on symbolic expressions for the estimation of the number of deceased
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and recovered cases for the entire U.S. showed that the latitude and the number of days
since the outbreak began exhibit first-order sensitivities while the longitude first order
sensitivity is much smaller when compared to the other two parameters. The higher-order
sensitivities do not occur due to the fact the total-effect values are not substantially higher
than the first-order indices.

4. Conclusions

In this study, the GP algorithm was utilized on a publicly available dataset to obtain
symbolic expressions for the estimation of the number of confirmed, deceased and recov-
ered patients for each state. The symbolic expressions for the estimation of the numbers of
confirmed deceased and recovered patients were summed to obtain symbolic expressions
for the estimation of the number of confirmed, recovered and deceased patients for the
entire U.S. The equation for the estimation of the number of confirmed, deceased and
recovered patients for the entire U.S. was used to obtain the equation for the estimation of
the epidemiology curve, which estimates the real epidemiology curve with high accuracy.
From the extensively conducted investigations, the following conclusions can be drawn:

• The GP algorithm can be utilized to obtain symbolic expressions for each U.S. state
based on the latitude and longitude of their central location and day as an input
variable to estimate the number of confirmed/deceased/recovered patients for the
aforementioned state.

• The obtained symbolic expressions for the estimation of the number of confirmed/de-
ceased/recovered patients for each state can be summed to obtain the symbolic ex-
pression for the estimation of the number of confirmed/deceased/recovered patients
for the entire U.S. with high accuracy.

• Symbolic expressions for the estimation of the number of confirmed, deceased and
recovered patients of the entire U.S. can be combined to obtain the symbolic expression
for the estimation of the epidemiology curve with very high accuracy.
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Appendix A. Tables of Results and Hyperparameters for Each State

Appendix A.1. Table of Results and Hyperparameters for Confirmed Patients

Table A1. GP parameters used to obtain symbolic expressions of confirmed patients for each state with achieved R2 score.

Federal State
GP Paramters (Population size, Number of Generations, Tournament Selection, Tree Depth,

Crossover Coefficient, Subtree Mutation Coefficient, Point Mutation Coefficient,
Hoist Mutation Coefficient, Maximum Samples, Constant Range, Parsimony Coefficeint)

R2 Score

Alabama 211 174 49 (5, 11) 0.92 0.0086 0.0377 0.0348 0.74 0.97 (−70,101.14, 63,475.94) 0.337 0.9946
Alaska 771 160 77 (5, 11) 0.9 0.0081 0.0314 0.005 0.25 0.99 (−74,741.62, 45,222.72) 0.913 0.9977

Arizona 883 147 70 (4, 12) 0.91 0.0209 0.0401 0.0283 0.23 0.96 (−81,270.3, 72,219.87) 0.928 0.9988
Arkansas 960 119 28 (6, 9) 0.91 0.055 0.0023 0.0111 0.36 0.97 (−10,062.42, 73,692.85) 1.655 0.9973
California 461 165 37 (4, 12) 0.91 0.011 0.0024 0.0676 0.28 0.92 (−37,240.04, 78,697.54) 0.507 0.9974
Colorado 460 107 45 (5, 12) 0.93 0.0019 0.017 0.0488 0.13 0.97 (−56,475.89, 14,750.88) 0.913 0.9951

Connecticut 901 195 49 (5, 8) 0.9 0.0005 0.0124 0.0648 0.24 0.9 (−28,905.51, 10,867.32) 1.129 0.9972
Delaware 511 156 85 (4, 12) 0.9 0.0319 0.0029 0.0034 0.59 0.98 (−92,946.76, 90,765.21) 1.153 0.9982

Florida 930 155 93 (5, 11) 0.91 0.014 0.0365 0.0412 0.17 0.97 (−74,763.22, 17,556.85) 1.631 0.9975
Georgia 710 180 44 (4, 10) 0.91 0.0243 0.0249 0.019 0.79 0.93 (−11,923.53, 43,023.78) 0.781 0.9990
Hawaii 637 188 39 (4, 9) 0.91 0.0622 0.0177 0.0098 0.72 0.99 (−84,943.77, 58,918.57) 0.406 0.9978
Idaho 822 185 41 (5, 12) 0.9 0.0043 0.0387 0.0414 0.96 0.91 (−50,998.8, 83,710.65) 1.441 0.9939
Illinois 820 174 53 (6, 8) 0.91 0.0101 0.0001 0.0025 0.4 0.97 (−68,319.97, 77,849.63) 0.334 0.9949
Indiana 966 194 22 (4, 11) 0.91 0.0303 0.0415 0.0127 0.08 0.94 (−73,395.89, 37,738.69) 1.512 0.9966

Iowa 516 116 32 (6, 8) 0.91 0.0008 0.0477 0.0037 0.39 0.91 (−28,074.55, 95,030.32) 0.332 0.9961
Kansas 277 174 44 (6, 9) 0.9 0.0293 0.0109 0.0411 0.67 0.91 (−82,436.08, 59,439.65) 1.681 0.9979

Kentucky 867 111 97 (3, 12) 0.93 0.0046 0.0331 0.0293 0.95 0.94 (−30,555.51, 41,645.64) 1.202 0.9979
Louisiana 284 174 91 (3, 9) 0.96 0.0219 0.0108 0.0062 0.87 0.99 (−95,819.22, 60,443.52) 1.953 0.9924

Maine 804 133 86 (4, 9) 0.9 0.021 0.0102 0.0025 0.02 0.99 (−37,413.71, 42,394.4) 1.417 0.9931
Maryland 507 145 25 (3, 12) 0.95 0.0298 0.0023 0.0179 0.38 0.98 (−15,303.86, 17,295.29) 0.529 0.9933

Massachusetts 322 183 98 (5, 10) 0.9 0.0058 0.0568 0.0128 0.84 0.97 (−31,625.58, 98,448.88) 1.495 0.9948
Michigan 827 100 50 (6, 10) 0.93 0.0167 0.0023 0.0451 0.78 0.97 (−52,357.23, 60,834.5) 1.081 0.9905
Minnesota 681 135 20 (4, 7) 0.92 0.0168 0.0206 0.0333 0.35 0.92 (−94,313.64, 64,670.51) 1.411 0.9957
Mississippi 324 199 85 (6, 7) 0.9 0.0026 0.0604 0.0122 0.89 0.91 (−47,173.58, 27,677.71) 1.835 0.9946

Missouri 294 110 100 (3, 9) 0.92 0.0047 0.0619 0.0156 0.61 0.99 (−48,330.54, 74,375.8) 0.84 0.9959
Montana 554 191 85 (3, 7) 0.91 0.0114 0.0101 0.0677 0.69 0.91 (−82,122.76, 43,188.31) 0.902 0.9950
Nebraska 948 118 48 (3, 10) 0.9 0.0206 0.033 0.0403 0.8 0.91 (−74,393.69, 72,222.09) 1.612 0.9966
Nevada 736 102 50 (3, 8) 0.91 0.0373 0.0029 0.0491 0.27 0.91 (−44,470.01, 81,992.42) 1.086 0.9938

New Hampshire 987 172 45 (6, 7) 0.91 0.0014 0.051 0.0201 0.51 0.97 (−86,428.52, 85,172.59) 0.538 0.9950
New Jersey 913 120 51 (6, 7) 0.92 0.0463 0.0086 0.0147 0.49 0.98 (−98,447.98, 75,736.98) 0.665 0.9976

New Mexico 549 185 71 (6, 8) 0.92 0.038 0.004 0.0086 0.93 1 (−37,868.32, 70,577.25) 0.525 0.9987
New York 720 180 79 (3, 12) 0.9 0.005 0.0271 0.0407 1 0.97 (−37,026.3, 56,065.38) 1.431 0.9992

North Carolina 905 166 61 (3, 9) 0.93 0.0491 0.0007 0.0086 0.85 0.97 (−97,323.84, 12,889.53) 0.597 0.9977
North Dakota 352 168 37 (6, 7) 0.9 0.0379 0.0316 0.0249 0.64 0.94 (−71,924.48, 96,395.39) 0.322 0.9991

Ohio 827 101 64 (4, 12) 0.92 0.0029 0.0278 0.0308 0.9 0.96 (−71,388.35, 16,610.45) 1.557 0.9986
Oklahoma 975 122 65 (6, 9) 0.92 0.0011 0.0114 0.0469 0.52 0.9 (−92,019.71, 79,120.08) 1.144 0.9980

Oregon 382 169 96 (4, 9) 0.9 0.021 0.0661 0.0089 0.72 0.91 (−17,084.62, 57,894.87) 1.055 0.9992
Pennsylvania 812 130 28 (6, 7) 0.91 0.0009 0.0276 0.0324 0.25 0.95 (−15,561.47, 37,619.51) 1.339 0.9939
Rhode Island 800 118 79 (5, 8) 0.91 0.0111 0.0406 0.009 0.69 0.93 (−82,805.13, 96,728.37) 1.029 0.9969

South Carolina 444 114 48 (6, 9) 0.92 0.0041 0.0309 0.0003 0.34 0.95 (−43,420.85, 57,720.71) 0.618 0.9990
South Dakota 353 143 51 (5, 10) 0.93 0.0193 0.0115 0.0345 0.56 0.91 (−51,233.69, 53,021.87) 0.39 0.9958

Tennessee 746 118 23 (4, 11) 0.92 0.049 0.0134 0.0039 0.66 0.96 (−89,010.11, 63,768.4) 1.438 0.9963
Texas 933 124 27 (5, 10) 0.94 0.0187 0.024 0.0088 0.04 0.91 (−94,093.37, 12,518.37) 1.108 0.9960
Utah 273 142 56 (6, 8) 0.91 0.0047 0.0092 0.0338 0.8 0.96 (−74,941.61, 80,716.41) 0.852 0.9975

Vermont 440 136 51 (5, 9) 0.97 0.0024 0.01 0.0126 0.59 0.9 (−17,580.55, 22,768.17) 1.775 0.9406
Virginia 529 134 76 (6, 7) 0.92 0.04 0.0303 0.0094 0.61 0.97 (−52,056.14, 24,414.66) 1.022 0.9992

Washington 414 115 91 (4, 9) 0.91 0.011 0.0034 0.0216 0.58 0.91 (−87,760.78, 65,016.13) 1.62 0.9934
West Virginia 366 194 23 (6, 8) 0.93 0.0361 0.0028 0.008 0.54 0.9 (−37,953.52, 50,863.41) 0.869 0.9992

Wisconsin 309 128 32 (4, 8) 0.92 0.047 0.0072 0.0118 0.64 0.95 (−45,415.23, 20,678.45) 1.892 0.9992
Wyoming 565 167 45 (4, 11) 0.9 0.0317 0.0021 0.0246 0.17 0.92 (−28,663.07, 33,417.43) 0.69 0.9912
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Appendix A.2. Table of Results and Hyperparameters for Deceased Patients

Table A2. GP parameters used to obtain symbolic expressions of deceased patients for each state with achieved R2 score.

State
GP Paramters (Population size, Number of Generations, Tournament Selection, Tree Depth,

Crossover Coefficient, Subtree Mutation Coefficient, Point Mutation Coefficient,
Hoist Mutation Coefficient, Maximum Samples, Constant Range, Parsimony Coefficeint)

R2 Score

Alabama 1560 100 197 (4, 11) 0.93 0.0458 0.0119 0.0043 0.82 0.96 (−59,911.8, 74,719.3) 0.128 0.9951
Alaska 1807 193 109 (3, 7) 0.91 0.0509 0.0252 0.0043 0.23 0.92 (−53,669.79, 47,613.97) 0.01 0.9911

Arizona 1485 101 174 (5, 8) 0.91 0.0385 0.0091 0.0126 0.68 0.99 (−44,062.11, 11,466.03) 0.151 0.9963
Arkansas 1630 102 196 (4, 11) 0.91 0.0027 0.0241 0.0011 0.08 0.91 (−81,559.68, 83,104.24) 0.053 0.9992
California 1924 117 172 (3, 8) 0.92 0.0179 0.0342 0.0292 1 0.92 (−96,904.52, 79,877.88) 0.162 0.9992
Colorado 1178 179 175 (5, 12) 0.91 0.027 0.0237 0.0184 0.2 0.93 (−83,617.77, 25,231.08) 0.039 0.9968

Connecticut 1858 103 133 (6, 8) 0.96 0.0025 0.0149 0.0034 0.51 0.96 (−46,501.8, 88,545.84) 0.025 0.9976
Delaware 1128 157 151 (6, 11) 0.9 0.0185 0.0493 0.0005 0.3 0.98 (−33,858.02, 50,208.99) 0.197 0.9907

Florida 1969 129 153 (6, 8) 0.91 0.003 0.0285 0.0524 0.94 0.95 (−55,101.46, 69,724.53) 0.068 0.9998
Georgia 1170 106 139 (3, 12) 0.9 0.0005 0.0101 0.0017 0.34 0.98 (−13,935.76, 26,427.37) 0.049 0.9977
Hawaii 1296 170 138 (5, 12) 0.9 0.0129 0.0222 0.0085 0.13 0.98 (−28,616.39, 56,164.19) 0.035 0.9906
Idaho 1083 130 106 (3, 7) 0.93 0.0299 0.0028 0.0015 0.86 0.95 (−67,748.18, 45,591.95) 0.138 0.9906
Illinois 1700 123 198 (3, 11) 0.92 0.03 0.0173 0.0275 0.81 1 (−49,294.38, 21,593.25) 0.161 0.9990
Indiana 1051 134 102 (3, 9) 0.91 0.0213 0.0414 0.0194 0.56 0.97 (−19,518.96, 33,483.42) 0.102 0.9940

Iowa 1667 111 193 (3, 7) 0.94 0.0097 0.0029 0.0144 0.28 0.97 (−98,321.14, 41,757.4) 0.088 0.9937
Kansas 1393 108 183 (6, 12) 0.94 0.0019 0.0262 0.0293 0.7 0.95 (−31,926.29, 67,467.88) 0.024 0.9985

Kentucky 1829 131 168 (3, 10) 0.92 0.0658 0.0061 0.0079 0.2 0.95 (−26,869.89, 16,036.16) 0.195 0.9950
Louisiana 1016 114 130 (6, 12) 0.91 0.0024 0.0191 0.0628 0.8 0.91 (−16,806.27, 71,585.89) 0.135 0.9941

Maine 1869 145 148 (6, 7) 0.92 0.0078 0.0235 0.0464 0.04 0.98 (−64,099.38, 46,028.69) 0.054 0.9862
Maryland 1529 172 103 (3, 11) 0.92 0.0352 0.0128 0.0269 0.3 0.92 (−49,603.7, 42,351.06) 0.156 0.9982

Massachusetts 1487 127 102 (4, 10) 0.93 0.0184 0.0428 0.0078 0.92 0.97 (−64,176.94, 12,262.06) 0.179 0.9989
Michigan 1386 129 179 (4, 8) 0.91 0.0033 0.0051 0.0088 0.14 0.97 (−34,562.94, 11,241.83) 0.111 0.9950
Minnesota 1336 181 185 (6, 9) 0.91 0.0432 0.0137 0.03 0.53 0.91 (−16,875.9, 67,235.11) 0.161 0.9953
Mississippi 1480 152 188 (3, 7) 0.93 0.0053 0.0105 0.0029 0.98 0.92 (−67,189.16, 11,351.11) 0.098 0.9977

Missouri 1173 138 177 (6, 9) 0.92 0.0287 0.0255 0.0082 0.99 0.94 (−35,034.14, 45,295.23) 0.064 0.9993
Montana 1846 117 137 (6, 9) 0.97 0.0018 0.0058 0.0076 0.05 0.99 (−14,649.73, 78,214.13) 0.128 0.9956
Nebraska 1936 113 174 (6, 9) 0.91 0.0053 0.0317 0.0394 0.9 0.96 (−89,634.26, 23,529.16) 0.098 0.9928
Nevada 1626 120 172 (4, 10) 0.92 0.0259 0.0026 0.0011 0.71 0.94 (−99,440.0, 84,386.68) 0.057 0.9966

New Hampshire 1052 124 164 (6, 7) 0.9 0.0289 0.0132 0.008 0.68 0.94 (−74,774.46, 60,048.45) 0.076 0.9945
New Jersey 1555 105 100 (6, 7) 0.91 0.0127 0.0624 0.0133 0.72 0.99 (−56,699.21, 11,954.36) 0.033 0.9952

New Mexico 1113 151 162 (4, 12) 0.91 0.0083 0.0134 0.071 0.48 0.91 (−99,066.51, 38,651.75) 0.06 0.9795
New York 1127 175 123 (3, 7) 0.91 0.0105 0.0001 0.0577 0.71 0.94 (−89,053.56, 96,401.32) 0.141 0.9980

North Carolina 1417 115 198 (4, 11) 0.93 0.0288 0.0154 0.0177 0.67 0.99 (−39,717.96, 70,703.02) 0.058 0.9972
North Dakota 1195 141 194 (4, 11) 0.9 0.0301 0.0297 0.017 0.68 0.91 (−46,157.53, 54,882.75) 0.122 0.9907

Ohio 1701 154 155 (3, 8) 0.9 0.0143 0.0635 0.0054 0.13 1 (−29,436.69, 66,004.0) 0.159 0.9976
Oklahoma 1248 102 121 (6, 11) 0.94 0.0079 0.0037 0.0371 0.51 0.99 (−19,528.3, 62,852.77) 0.053 0.9934

Oregon 1950 166 134 (3, 8) 0.9 0.0068 0.0248 0.062 0.61 0.94 (−11,840.52, 71,714.33) 0.088 0.9960
Pennsylvania 1766 149 125 (4, 9) 0.92 0.0065 0.0533 0.0007 0.39 0.9 (−37,853.26, 79,323.8) 0.16 0.9984
Rhode Island 1313 100 177 (4, 9) 0.91 0.0351 0.0088 0.0303 0.58 1 (−91,193.12, 47,731.69) 0.171 0.9904

South Carolina 1951 135 129 (6, 7) 0.91 0.0377 0.0189 0.0117 0.6 0.91 (−36,718.97, 96,189.2) 0.11 0.9982
South Dakota 1986 117 149 (3, 7) 0.92 0.0638 0.0014 0.0078 0.07 0.99 (−18,339.16, 69,218.67) 0.075 0.9972

Tennessee 1807 135 113 (4, 7) 0.96 0.0041 0.0195 0.001 0.07 0.97 (−40,942.66, 76,218.33) 0.131 0.9989
Texas 1611 169 163 (3, 12) 0.91 0.0164 0.0459 0.0059 0.55 0.96 (−30,718.01, 95,378.4) 0.197 0.9986
Utah 1106 123 144 (3, 10) 0.97 0.0058 0.0017 0.0241 0.68 0.94 (−88,621.48, 18,401.85) 0.175 0.9927

Vermont 1482 175 180 (6, 9) 0.92 0.0108 0.0295 0.0402 0.03 0.92 (−95,752.51, 86,013.68) 0.116 0.9925
Virginia 1153 196 192 (6, 9) 0.9 0.0323 0.0372 0.0284 0.47 0.95 (−81,831.35, 83,625.37) 0.106 0.9970

Washington 1596 124 125 (5, 10) 0.9 0.001 0.026 0.0609 0.01 0.96 (−78,735.68, 72,604.06) 0.144 0.9404
West Virginia 1309 165 139 (6, 7) 0.91 0.0543 0.0056 0.003 0.79 0.91 (−20,826.25, 46,189.87) 0.042 0.9976

Wisconsin 1423 144 108 (4, 9) 0.94 0.0176 0.0158 0.0151 0.3 0.94 (−88,808.96, 72,727.52) 0.013 0.9957
Wyoming 1763 107 185 (4, 11) 0.93 0.0449 0.0044 0.0048 0.42 0.93 (−29,862.23, 55,353.33) 0.136 0.9918
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Appendix A.3. Table of Results and Hyperparameters for Recovered Patients

Table A3. TGP parameters used to obtain symbolic expressions of recovered patients for each state with achieved R2 score.

State
GP Paramters (Population size, Number of Generations, Tournament Selection, Tree Dept,

Crossover Coefficient, Subtree Mutation Coefficient, Point Mutation Coefficient,
Hoist Mutation Coefficient, Maximum Samples, Constant Range, Parsimony Coefficeint)

R2 Score

Alabama 1692 194 101 (5, 11) 0.94 0.0084 0.012 0.0186 0.33 0.94 (−40,687.16, 62,255.12) 1.175 0.997328
Alaska 1819 173 101 (4, 10) 0.92 0.0053 0.012 0.0061 0.24 0.91 (−96,425.9, 52,000.72) 0.229 0.992049

Arizona 1987 109 178 (4, 7) 0.91 0.0308 0.012 0.0491 0.91 0.93 (−31,479.48, 24,361.18) 1.847 0.995554
Arkansas 1370 171 187 (3, 10) 0.91 0.0557 0.004 0.0128 0.78 0.98 (−39,980.95, 93,794.62) 1.426 0.997685
California 1596 167 145 (5, 10) 0.93 0.0062 0.0209 0.027 0.89 0.96 (−75,968.18, 36,861.41) 0.652 0.99833
Colorado 1742 170 164 (5, 7) 0.91 0.0399 0.0006 0.0487 0.94 0.98 (−30,246.91, 92,280.0) 0.119 0.998557

Connecticut 1777 184 102 (6, 8) 0.92 0.0093 0.0131 0.0307 0.04 0.92 (−34,426.08, 15,684.83) 1.277 0.998242
Delaware 1963 196 171 (6, 7) 0.96 0.0047 0.0137 0.0054 0.22 0.92 (−15,778.35, 39,877.09) 0.1 0.99423

Florida 1957 101 144 (6, 12) 0.93 0.0051 0.0051 0.0278 0.74 0.91 (−44,281.68, 36,978.67) 0.395 0.997043
Georgia 1892 119 149 (4, 9) 0.9 0.0482 0.0105 0.015 0.78 0.94 (−64,708.07, 93,322.46) 0.858 0.998556
Hawaii 1041 138 177 (6, 10) 0.9 0.0133 0.0453 0.0147 0.95 0.98 (−43,162.04, 20,225.95) 0.348 0.983491
Idaho 1967 117 194 (3, 10) 0.94 0.0071 0.0484 0.0058 0.68 0.98 (−84,158.66, 36,695.1) 0.25 0.999529
Illinois 1155 114 109 (3, 11) 0.94 0.0114 0.0012 0.0027 0.92 1 (−79,669.27, 92,735.77) 1.112 0.996273
Indiana 1572 109 184 (4, 11) 0.92 0.0121 0.0195 0.0254 0.11 0.96 (−62,380.4, 28,314.4) 1.691 0.996928

Iowa 1363 144 196 (6, 12) 0.91 0.0138 0.0489 0.0186 0.78 0.98 (−81,536.43, 29,347.32) 0.207 0.998156
Kansas 1750 144 182 (5, 9) 0.91 0.0297 0.0304 0.0213 0.95 0.93 (−58,666.97, 75,144.45) 1.678 0.998437

Kentucky 1293 183 154 (6, 10) 0.9 0.0223 0.0275 0.0162 0.83 0.96 (−84,243.44, 82,923.58) 1.4 0.99247
Louisiana 1597 138 198 (4, 12) 0.93 0.0224 0.0274 0.0024 0.75 0.91 (−65,660.45, 51,980.82) 1.069 0.993177

Maine 1848 110 102 (4, 10) 0.91 0.0568 0.0239 0.0086 0.03 0.96 (−94,938.64, 41,857.95) 0.221 0.997116
Maryland 1983 177 197 (4, 7) 0.9 0.0708 0.0081 0.0174 0.98 0.91 (−33,498.91, 75,399.0) 1.359 0.996912

Massachusetts 1923 123 117 (5, 11) 0.92 0.0046 0.0013 0.0625 0.41 0.94 (−53,547.7, 53,068.29) 0.599 0.991613
Michigan 1957 121 149 (4, 7) 0.92 0.0151 0.0048 0.0427 0.27 0.99 (−70,498.48, 76,208.22) 1.602 0.990563
Minnesota 1474 164 161 (4, 7) 0.95 0.0085 0.004 0.0362 0.66 0.93 (−89,378.38, 12,518.38) 1.27 0.999551
Mississippi 1878 157 180 (4, 10) 0.91 0.0078 0.0343 0.0243 0.36 0.99 (−69,080.55, 41,650.59) 0.148 0.998907

Missouri 1524 114 189 (6, 11) 0.96 0.0055 0.0083 0.0178 0.71 0.91 (−58,679.61, 18,090.86) 1.703 0.997492
Montana 1737 171 184 (6, 7) 0.93 0.0248 0.004 0.0253 0.51 0.94 (−29,350.61, 26,050.27) 1.821 0.991147
Nebraska 1736 136 151 (4, 9) 0.9 0.0146 0.0373 0.0427 0.95 0.93 (−88,950.04, 33,806.79) 0.776 0.991462
Nevada 1178 146 110 (3, 7) 0.91 0.0477 0.0026 0.0347 0.1 0.95 (−43,965.03, 72,125.86) 1.327 0.992045

New Hampshire 1678 136 159 (5, 7) 0.92 0.0214 0.0116 0.0022 0.89 0.91 (−28,363.16, 48,743.6) 0.648 0.993274
New Jersey 1193 114 200 (6, 8) 0.95 0.0097 0.0031 0.0152 0.84 0.91 (−38,954.87, 50,274.61) 0.674 0.997067

New Mexico 1642 181 199 (4, 10) 0.97 0.0103 0.0008 0.016 0.43 0.94 (−41,177.27, 26,347.72) 0.391 0.997407
New York 1779 152 165 (5, 12) 0.9 0.0154 0.0063 0.0552 0.27 0.94 (−82,261.02, 85,378.68) 1.56 0.997782

North Carolina 1406 130 143 (5, 11) 0.93 0.0513 0.0062 0.0054 0.69 0.98 (−28,595.52, 66,166.6) 0.221 0.996477
North Dakota 1573 164 191 (5, 10) 0.91 0.0428 0.0222 0.0164 0.87 0.96 (−87,840.07, 16,782.34) 0.897 0.996419

Ohio 1451 141 117 (3, 12) 0.91 0.039 0.0257 0.0099 0.56 0.95 (−13,223.56, 83,042.99) 1.063 0.999314
Oklahoma 1331 188 113 (6, 8) 0.91 0.0017 0.0214 0.0503 0.27 0.96 (−48,918.28, 92,436.69) 0.484 0.996927

Oregon 1500 109 115 (4, 9) 0.9 0.0679 0.0109 0.0088 0.7 0.99 (−18,150.22, 21,135.98) 0.539 0.99823
Pennsylvania 1650 114 121 (3, 9) 0.93 0.0125 0.016 0.0359 0.77 1 (−49,036.36, 57,956.7) 1.785 0.99771
Rhode Island 1975 180 196 (6, 9) 0.92 0.025 0.0076 0.0072 0.94 0.94 (−20,950.37, 87,459.91) 0.459 0.983645

South Carolina 1239 176 198 (3, 9) 0.91 0.0021 0.05 0.0206 0.85 0.97 (−14,444.19, 92,390.17) 1.381 0.99792
South Dakota 1470 166 121 (5, 7) 0.92 0.0028 0.0023 0.0603 0.83 0.94 (−88,393.46, 72,432.92) 0.929 0.998192

Tennessee 1783 131 123 (4, 7) 0.93 0.005 0.0171 0.0474 0.86 0.96 (−58,354.06, 88,482.19) 1.821 0.99929
Texas 1047 133 125 (3, 9) 0.9 0.0501 0.0033 0.0375 0.84 0.94 (−42,111.51, 86,733.0) 1.057 0.999476
Utah 1253 181 191 (5, 10) 0.93 0.0213 0.0208 0.0163 0.12 0.92 (−42,893.54, 61,858.96) 0.339 0.995521

Vermont 1029 177 183 (3, 8) 0.91 0.0179 0.0157 0.0572 0.46 0.97 (−85,678.92, 59,965.71) 0.324 0.979788
Virginia 1650 153 151 (6, 12) 0.94 0.0024 0.0227 0.0271 0.99 0.9 (−23,993.54, 41,056.55) 1.736 0.996561

Washington 1766 134 149 (5, 10) 0.91 0.007 0.0135 0.0205 0.05 0.97 (−47,952.8, 78,162.68) 1.549 0.992944
West Virginia 1542 175 198 (3, 12) 0.92 0.0385 0.0084 0.0254 0.7 0.94 (−81,647.2, 33,925.68) 1.241 0.99826

Wisconsin 1884 158 124 (3, 7) 0.92 0.0078 0.0158 0.0349 0.2 0.92 (−58,100.96, 16,423.25) 1.548 0.998998
Wyoming 1778 117 105 (4, 8) 0.95 0.008 0.0054 0.0056 0.26 0.92 (−45,555.91, 47,028.4) 1.979 0.996617
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